Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'On 'Generation and Corruption'' and 'fragments/reports'

unexpand these ideas     |    start again     |     specify just one area for these texts


8 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
9. Objects / C. Structure of Objects / 6. Constitution of an Object
If someone squashed a horse to make a dog, something new would now exist [Mnesarchus]
     Full Idea: If, for the sake of argument, someone were to mould a horse, squash it, then make a dog, it would be reasonable for us on seeing this to say that this previously did not exist but now does exist.
     From: Mnesarchus (fragments/reports [c.120 BCE]), quoted by John Stobaeus - Anthology 179.11
     A reaction: Locke would say it is new, because the substance is the same, but a new life now exists. A sword could cease to exist and become a new ploughshare, I would think. Apply this to the Ship of Theseus. Is form more important than substance?
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / f. Ancient elements
Elements are found last in dismantling bodies, and first in generating them [Albert of Saxony]
     Full Idea: On one possible description, an element is what is found last when bodies are taken apart, and what is found first when bodies are generated.
     From: Albert of Saxony (On 'Generation and Corruption' [1356], II.3), quoted by Robert Pasnau - Metaphysical Themes 1274-1671 2.1