Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'talk' and 'Models and Reality'

unexpand these ideas     |    start again     |     specify just one area for these texts


11 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
The Löwenheim-Skolem theorems show that whether all sets are constructible is indeterminate [Putnam, by Shapiro]
     Full Idea: Putnam claims that the Löwenheim-Skolem theorems indicate that there is no 'fact of the matter' whether all sets are constructible.
     From: report of Hilary Putnam (Models and Reality [1977]) by Stewart Shapiro - Foundations without Foundationalism
     A reaction: [He refers to the 4th and 5th pages of Putnam's article] Shapiro offers (p.109) a critique of Putnam's proposal.
V = L just says all sets are constructible [Putnam]
     Full Idea: V = L just says all sets are constructible. L is the class of all constructible sets, and V is the universe of all sets.
     From: Hilary Putnam (Models and Reality [1977], p.425)
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The Löwenheim-Skolem Theorem is close to an antinomy in philosophy of language [Putnam]
     Full Idea: The Löwenheim-Skolem Theorem says that a satisfiable first-order theory (in a countable language) has a countable model. ..I argue that this is not a logical antinomy, but close to one in philosophy of language.
     From: Hilary Putnam (Models and Reality [1977], p.421)
     A reaction: See the rest of this paper for where he takes us on this.
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
It is unfashionable, but most mathematical intuitions come from nature [Putnam]
     Full Idea: Experience with nature is undoubtedly the source of our most basic 'mathematical intuitions', even if it is unfashionable to say so.
     From: Hilary Putnam (Models and Reality [1977], p.424)
     A reaction: Correct. I find it quite bewildering how Frege has managed to so discredit all empirical and psychological approaches to mathematics that it has become a heresy to say such things.
24. Political Theory / B. Nature of a State / 5. Culture
Culture is the struggle to agree what is normal [Gibson,A]
     Full Idea: Culture is the struggle to agree what is normal.
     From: Andrew Gibson (talk [2018])
     A reaction: A nice aphorism. Typically the struggle took place in villages, but has now gone global. The normalities of other cultures are beamed into a remote society, and are frequently unwelcome.