Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'Paradoxes of the Infinite' and 'Formal and Transcendental Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


11 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
An aggregate in which order does not matter I call a 'set' [Bolzano]
     Full Idea: An aggregate whose basic conception renders the arrangement of its members a matter of indifference, and whose permutation therefore produces no essential difference, I call a 'set'.
     From: Bernard Bolzano (Paradoxes of the Infinite [1846], §4), quoted by William W. Tait - Frege versus Cantor and Dedekind IX
     A reaction: The idea of 'sets' was emerging before Cantor formalised it, and clarified it by thinking about infinite sets. Nowadays we also have 'ordered' sets, which rather contradicts Bolzano, and we also expect the cardinality to be determinate.
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Logicians presuppose a world, and ignore logic/world connections, so their logic is impure [Husserl, by Velarde-Mayol]
     Full Idea: Husserl maintained that because most logicians have not studied the connection between logic and the world, logic did not achieve its status of purity. Even more, their logic implicitly presupposed a world.
     From: report of Edmund Husserl (Formal and Transcendental Logic [1929]) by Victor Velarde-Mayol - On Husserl 4.5.1
     A reaction: The point here is that the bracketing of phenomenology, to reach an understanding with no presuppositions, is impossible if you don't realise what your are presupposing. I think the logic/world relationship is badly neglected, thanks to Frege.
Phenomenology grounds logic in subjective experience [Husserl, by Velarde-Mayol]
     Full Idea: The phenomenological logic grounds logical notions in subjective acts of experience.
     From: report of Edmund Husserl (Formal and Transcendental Logic [1929], p.183) by Victor Velarde-Mayol - On Husserl 4.5.1
     A reaction: I'll approach this with great caution, but this is a line of thought that appeals to me. The core assumptions of logic do not arise ex nihilo.
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
A truly infinite quantity does not need to be a variable [Bolzano]
     Full Idea: A truly infinite quantity (for example, the length of a straight line, unbounded in either direction) does not by any means need to be a variable.
     From: Bernard Bolzano (Paradoxes of the Infinite [1846]), quoted by Brian Clegg - Infinity: Quest to Think the Unthinkable §10
     A reaction: This is an important idea, followed up by Cantor, which relegated to the sidelines the view of infinity as simply something that could increase without limit. Personally I like the old view, but there is something mathematically stable about infinity.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Pure mathematics is the relations between all possible objects, and is thus formal ontology [Husserl, by Velarde-Mayol]
     Full Idea: Pure mathematics is the science of the relations between any object whatever (relation of whole to part, relation of equality, property, unity etc.). In this sense, pure mathematics is seen by Husserl as formal ontology.
     From: report of Edmund Husserl (Formal and Transcendental Logic [1929]) by Victor Velarde-Mayol - On Husserl 4.5.2
     A reaction: I would expect most modern analytic philosophers to agree with this. Modern mathematics (e.g. category theory) seems to have moved beyond this stage, but I still like this idea.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)