Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'Regressive Method for Premises in Mathematics' and 'Does moral phil rest on a mistake?'

unexpand these ideas     |    start again     |     specify just one area for these texts


23 ideas

1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / e. Philosophy as reason
Discoveries in mathematics can challenge philosophy, and offer it a new foundation [Russell]
     Full Idea: Any new discovery as to mathematical method and principles is likely to upset a great deal of otherwise plausible philosophising, as well as to suggest a new philosophy which will be solid in proportion as its foundations in mathematics are securely laid.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.283)
     A reaction: This is a manifesto for modern analytic philosophy. I'm not convinced, especially if a fictionalist view of maths is plausible. What Russell wants is rigour, but there are other ways of getting that. Currently I favour artificial intelligence.
2. Reason / A. Nature of Reason / 6. Coherence
If one proposition is deduced from another, they are more certain together than alone [Russell]
     Full Idea: Two obvious propositions of which one can be deduced from the other both become more certain than either in isolation; thus in a complicated deductive system, many parts of which are obvious, the total probability may become all but absolute certainty.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.279)
     A reaction: Thagard picked this remark out, in support of his work on coherence.
2. Reason / B. Laws of Thought / 3. Non-Contradiction
Non-contradiction was learned from instances, and then found to be indubitable [Russell]
     Full Idea: The law of contradiction must have been originally discovered by generalising from instances, though, once discovered, it was found to be quite as indubitable as the instances.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.274)
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Which premises are ultimate varies with context [Russell]
     Full Idea: Premises which are ultimate in one investigation may cease to be so in another.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.273)
The sources of a proof are the reasons why we believe its conclusion [Russell]
     Full Idea: In mathematics, except in the earliest parts, the propositions from which a given proposition is deduced generally give the reason why we believe the given proposition.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.273)
Finding the axioms may be the only route to some new results [Russell]
     Full Idea: The premises [of a science] ...are pretty certain to lead to a number of new results which could not otherwise have been known.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.282)
     A reaction: I identify this as the 'fruitfulness' that results when the essence of something is discovered.
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
It seems absurd to prove 2+2=4, where the conclusion is more certain than premises [Russell]
     Full Idea: It is an apparent absurdity in proceeding ...through many rather recondite propositions of symbolic logic, to the 'proof' of such truisms as 2+2=4: for it is plain that the conclusion is more certain than the premises, and the supposed proof seems futile.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.272)
     A reaction: Famously, 'Principia Mathematica' proved this fact at enormous length. I wonder if this thought led Moore to his common sense view of his own hand - the conclusion being better than the sceptical arguments?
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Arithmetic was probably inferred from relationships between physical objects [Russell]
     Full Idea: When 2 + 2 =4 was first discovered, it was probably inferred from the case of sheep and other concrete cases.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.272)
11. Knowledge Aims / B. Certain Knowledge / 3. Fallibilism
The most obvious beliefs are not infallible, as other obvious beliefs may conflict [Russell]
     Full Idea: Even where there is the highest degree of obviousness, we cannot assume that we are infallible - a sufficient conflict with other obvious propositions may lead us to abandon our belief, as in the case of a hallucination afterwards recognised as such.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.279)
     A reaction: This approach to fallibilism seems to arise from the paradox that undermined Frege's rather obvious looking axioms. After Peirce and Russell, fallibilism has become a secure norm of modern thought.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / a. Coherence as justification
Believing a whole science is more than believing each of its propositions [Russell]
     Full Idea: Although intrinsic obviousness is the basis of every science, it is never, in a fairly advanced science, the whole of our reason for believing any one proposition of the science.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.279)
14. Science / C. Induction / 2. Aims of Induction
Induction is inferring premises from consequences [Russell]
     Full Idea: The inferring of premises from consequences is the essence of induction.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.274)
     A reaction: So induction is just deduction in reverse? Induction is transcendental deduction? Do I deduce the premises from observing a lot of white swans? Hm.
22. Metaethics / A. Ethics Foundations / 1. Nature of Ethics / c. Purpose of ethics
The 'Ethics' is disappointing, because it fails to try to justify our duties [Prichard]
     Full Idea: Reading the 'Ethics' is so disappointing, because Aristotle does not try to convince us that we really ought to do what our non-reflective consciousness has hitherto believed we ought to do.
     From: H.A. Prichard (Does moral phil rest on a mistake? [1912])
     A reaction: Aristotle didn't speak the language of 'duty' (see Idea 2172), but he could work it into his account if Prichard asked nicely. I take the truly virtuous person to be, above all, a wonderful citizen. Duties are contractual; good deeds flow from virtue.
23. Ethics / C. Virtue Theory / 1. Virtue Theory / c. Particularism
The mistake is to think we can prove what can only be seen directly in moral thinking [Prichard]
     Full Idea: Moral Philosophy rests on the mistake of supposing the possibility of proving what can only be apprehended directly by an act of moral thinking.
     From: H.A. Prichard (Does moral phil rest on a mistake? [1912])
     A reaction: This is a beginning of the rebellion against the Enlightenment Project in ethics, which is why Prichard has become popular. At bottom he is offering intuition ('direct moral thinking'), which is a frustratingly thin concept.
23. Ethics / C. Virtue Theory / 1. Virtue Theory / d. Virtue theory critique
Virtues won't generate an obligation, so it isn't a basis for morality [Prichard]
     Full Idea: It is untrue to urge that, since courage is a virtue, we ought to act courageously. We feel an obligation to act, but not from a certain desire. The action is done from obligation, so isn't an act of courage. ..In fact, virtue is no basis for morality.
     From: H.A. Prichard (Does moral phil rest on a mistake? [1912])
     A reaction: One of the few interesting and direct attacks on virtue theory, before its modern revival. Prichard urges a perception of what is valuable (or good) as the basis for obligation and right action. He is right that values come first, in virtue and elsewhere.
23. Ethics / D. Deontological Ethics / 2. Duty
We feel obligations to overcome our own failings, and these are not relations to other people [Prichard]
     Full Idea: The relation involved in an obligation need not be a relation to another at all. Thus we should admit that there is an obligation to overcome our natural timidity or greediness, and this involves no relations to others.
     From: H.A. Prichard (Does moral phil rest on a mistake? [1912])
     A reaction: An interesting un-Aristotelian and individualistic view of virtue. Why would we want to rid ourselves of timidity or greediness? Either it is self-interested, or we wish to be better citizens. See Richard Taylor on duty.
23. Ethics / E. Utilitarianism / 1. Utilitarianism
If pain were instrinsically wrong, it would be immoral to inflict it on ourselves [Prichard]
     Full Idea: If the badness of pain were the reason why we ought not to inflict pain on another, it would equally be a reason why we ought not to inflict pain on ourselves; yet, though we would call such behaviour foolish, we wouldn't think it wrong.
     From: H.A. Prichard (Does moral phil rest on a mistake? [1912], n4)
     A reaction: A very nice point. Note that it will equally well apply to 'benefit' or 'preferences', or any other ideal which utilitarians set out to maximise. It may not be bad to hurt yourself, but it might still be bad to harm yourself.
26. Natural Theory / D. Laws of Nature / 1. Laws of Nature
The law of gravity has many consequences beyond its grounding observations [Russell]
     Full Idea: The law of gravitation leads to many consequences which could not be discovered merely from the apparent motions of the heavenly bodies.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.275)