Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'Mathematical logic and theory of types' and 'Ontology and Mathematical Truth'

unexpand these ideas     |    start again     |     specify just one area for these texts


23 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
'Impure' sets have a concrete member, while 'pure' (abstract) sets do not [Jubien]
     Full Idea: Any set with a concrete member is 'impure'. 'Pure' sets are those that are not impure, and are paradigm cases of abstract entities, such as the sort of sets apparently dealt with in Zermelo-Fraenkel (ZF) set theory.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.116)
     A reaction: [I am unclear whether Jubien is introducing this distinction] This seems crucial in accounts of mathematics. On the one had arithmetic can be built from Millian pebbles, giving impure sets, while logicists build it from pure sets.
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Classes can be reduced to propositional functions [Russell, by Hanna]
     Full Idea: Russell held that classes can be reduced to propositional functions.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by Robert Hanna - Rationality and Logic 2.4
     A reaction: The exact nature of a propositional function is disputed amongst Russell scholars (though it is roughly an open sentence of the form 'x is red').
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A model is 'fundamental' if it contains only concrete entities [Jubien]
     Full Idea: A first-order model can be viewed as a kind of ordered set, and if the domain of the model contains only concrete entities then it is a 'fundamental' model.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.117)
     A reaction: An important idea. Fundamental models are where the world of logic connects with the physical world. Any account of relationship between fundamental models and more abstract ones tells us how thought links to world.
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / d. Russell's paradox
The class of classes which lack self-membership leads to a contradiction [Russell, by Grayling]
     Full Idea: The class of teaspoons isn't a teaspoon, so isn't a member of itself; but the class of non-teaspoons is a member of itself. The class of all classes which are not members of themselves is a member of itself if it isn't a member of itself! Paradox.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by A.C. Grayling - Russell Ch.2
     A reaction: A very compressed version of Russell's famous paradox, often known as the 'barber' paradox. Russell developed his Theory of Types in an attempt to counter the paradox. Frege's response was to despair of his own theory.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
There couldn't just be one number, such as 17 [Jubien]
     Full Idea: It makes no sense to suppose there might be just one natural number, say seventeen.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.113)
     A reaction: Hm. Not convinced. If numbers are essentially patterns, we might only have the number 'twelve', because we had built our religion around anything which exhibited that form (in any of its various arrangements). Nice point, though.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
The subject-matter of (pure) mathematics is abstract structure [Jubien]
     Full Idea: The subject-matter of (pure) mathematics is abstract structure per se.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.115)
     A reaction: This is the Structuralist idea beginning to take shape after Benacerraf's launching of it. Note that Jubien gets there by his rejection of platonism, whereas some structuralist have given a platonist interpretation of structure.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
If we all intuited mathematical objects, platonism would be agreed [Jubien]
     Full Idea: If the intuition of mathematical objects were general, there would be no real debate over platonism.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.111)
     A reaction: It is particularly perplexing when Gödel says that his perception of them is just like sight or smell, since I have no such perception. How do you individuate very large numbers, or irrational numbers, apart from writing down numerals?
How can pure abstract entities give models to serve as interpretations? [Jubien]
     Full Idea: I am unable to see how the mere existence of pure abstract entities enables us to concoct appropriate models to serve as interpretations.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.111)
     A reaction: Nice question. It is always assumed that once we have platonic realm, that everything else follows. Even if we are able to grasp the objects, despite their causal inertness, we still have to discern innumerable relations between them.
Since mathematical objects are essentially relational, they can't be picked out on their own [Jubien]
     Full Idea: The essential properties of mathematical entities seem to be relational, ...so we make no progress unless we can pick out some mathematical entities wihout presupposing other entities already picked out.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.112)
     A reaction: [compressed] Jubien is a good critic of platonism. He has identified the problem with Frege's metaphor of a 'borehole', where we discover delightful new properties of numbers simply by reaching them.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Type theory seems an extreme reaction, since self-exemplification is often innocuous [Swoyer on Russell]
     Full Idea: Russell's reaction to his paradox (by creating his theory of types) seems extreme, because many cases of self-exemplification are innocuous. The property of being a property is itself a property.
     From: comment on Bertrand Russell (Mathematical logic and theory of types [1908]) by Chris Swoyer - Properties 7.5
     A reaction: Perhaps it is not enough that 'many cases' are innocuous. We are starting from philosophy of mathematics, where precision is essentially. General views about properties come later.
Russell's improvements blocked mathematics as well as paradoxes, and needed further axioms [Russell, by Musgrave]
     Full Idea: Unfortunately, Russell's new logic, as well as preventing the deduction of paradoxes, also prevented the deduction of mathematics, so he supplemented it with additional axioms, of Infinity, of Choice, and of Reducibility.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by Alan Musgrave - Logicism Revisited §2
     A reaction: The first axiom seems to be an empirical hypothesis, and the second has turned out to be independent of logic and set theory.
Type theory means that features shared by different levels cannot be expressed [Morris,M on Russell]
     Full Idea: Russell's theory of types avoided the paradoxes, but it had the result that features common to different levels of the hierarchy become uncapturable (since any attempt to capture them would involve a predicate which disobeyed the hierarchy restrictions).
     From: comment on Bertrand Russell (Mathematical logic and theory of types [1908]) by Michael Morris - Guidebook to Wittgenstein's Tractatus 2H
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Ramified types can be defended as a system of intensional logic, with a 'no class' view of sets [Russell, by Linsky,B]
     Full Idea: A defence of the ramified theory of types comes in seeing it as a system of intensional logic which includes the 'no class' account of sets, and indeed the whole development of mathematics, as just a part.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by Bernard Linsky - Russell's Metaphysical Logic 6.1
     A reaction: So Linsky's basic project is to save logicism, by resting on intensional logic (rather than extensional logic and set theory). I'm not aware that Linsky has acquired followers for this. Maybe Crispin Wright has commented?
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
A set does not exist unless at least one of its specifications is predicative [Russell, by Bostock]
     Full Idea: The idea is that the same set may well have different canonical specifications, i.e. there may be different ways of stating its membership conditions, and so long as one of these is predicative all is well. If none are, the supposed set does not exist.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by David Bostock - Philosophy of Mathematics 8.1
Russell is a conceptualist here, saying some abstracta only exist because definitions create them [Russell, by Bostock]
     Full Idea: It is a conceptualist approach that Russell is relying on. ...The view is that some abstract objects ...exist only because they are definable. It is the definition that would (if permitted) somehow bring them into existence.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by David Bostock - Philosophy of Mathematics 8.1
     A reaction: I'm suddenly thinking that predicativism is rather interesting. Being of an anti-platonist persuasion about abstract 'objects', I take some story about how we generate them to be needed. Psychological abstraction seems right, but a bit vague.
Vicious Circle says if it is expressed using the whole collection, it can't be in the collection [Russell, by Bostock]
     Full Idea: The Vicious Circle Principle says, roughly, that whatever involves, or presupposes, or is only definable in terms of, all of a collection cannot itself be one of the collection.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908], p.63,75) by David Bostock - Philosophy of Mathematics 8.1
     A reaction: This is Bostock's paraphrase of Russell, because Russell never quite puts it clearly. The response is the requirement to be 'predicative'. Bostock emphasises that it mainly concerns definitions. The Principle 'always leads to hierarchies'.
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
The empty set is the purest abstract object [Jubien]
     Full Idea: The empty set is the pure abstract object par excellence.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.118 n8)
     A reaction: So a really good PhD on the empty set could crack the whole nature of reality. Get to work, whoever you are!