Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'Regressive Method for Premises in Mathematics' and 'What are Sets and What are they For?'

unexpand these ideas     |    start again     |     specify just one area for these texts


28 ideas

1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / e. Philosophy as reason
Discoveries in mathematics can challenge philosophy, and offer it a new foundation [Russell]
     Full Idea: Any new discovery as to mathematical method and principles is likely to upset a great deal of otherwise plausible philosophising, as well as to suggest a new philosophy which will be solid in proportion as its foundations in mathematics are securely laid.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.283)
     A reaction: This is a manifesto for modern analytic philosophy. I'm not convinced, especially if a fictionalist view of maths is plausible. What Russell wants is rigour, but there are other ways of getting that. Currently I favour artificial intelligence.
2. Reason / A. Nature of Reason / 6. Coherence
If one proposition is deduced from another, they are more certain together than alone [Russell]
     Full Idea: Two obvious propositions of which one can be deduced from the other both become more certain than either in isolation; thus in a complicated deductive system, many parts of which are obvious, the total probability may become all but absolute certainty.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.279)
     A reaction: Thagard picked this remark out, in support of his work on coherence.
2. Reason / B. Laws of Thought / 3. Non-Contradiction
Non-contradiction was learned from instances, and then found to be indubitable [Russell]
     Full Idea: The law of contradiction must have been originally discovered by generalising from instances, though, once discovered, it was found to be quite as indubitable as the instances.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.274)
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The empty set is usually derived from Separation, but it also seems to need Infinity [Oliver/Smiley]
     Full Idea: The empty set is usually derived via Zermelo's axiom of separation. But the axiom of separation is conditional: it requires the existence of a set in order to generate others as subsets of it. The original set has to come from the axiom of infinity.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
     A reaction: They charge that this leads to circularity, as Infinity depends on the empty set.
The empty set is something, not nothing! [Oliver/Smiley]
     Full Idea: Some authors need to be told loud and clear: if there is an empty set, it is something, not nothing.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
     A reaction: I'm inclined to think of a null set as a pair of brackets, so maybe that puts it into a metalanguage.
We don't need the empty set to express non-existence, as there are other ways to do that [Oliver/Smiley]
     Full Idea: The empty set is said to be useful to express non-existence, but saying 'there are no Us', or ¬∃xUx are no less concise, and certainly less roundabout.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
Maybe we can treat the empty set symbol as just meaning an empty term [Oliver/Smiley]
     Full Idea: Suppose we introduce Ω not as a term standing for a supposed empty set, but as a paradigm of an empty term, not standing for anything.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
     A reaction: This proposal, which they go on to explore, seems to mean that Ω (i.e. the traditional empty set symbol) is no longer part of set theory but is part of semantics.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
The unit set may be needed to express intersections that leave a single member [Oliver/Smiley]
     Full Idea: Thomason says with no unit sets we couldn't call {1,2}∩{2,3} a set - but so what? Why shouldn't the intersection be the number 2? However, we then have to distinguish three different cases of intersection (common subset or member, or disjoint).
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 2.2)
5. Theory of Logic / G. Quantification / 6. Plural Quantification
If you only refer to objects one at a time, you need sets in order to refer to a plurality [Oliver/Smiley]
     Full Idea: A 'singularist', who refers to objects one at a time, must resort to the language of sets in order to replace plural reference to members ('Henry VIII's wives') by singular reference to a set ('the set of Henry VIII's wives').
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], Intro)
     A reaction: A simple and illuminating point about the motivation for plural reference. Null sets and singletons give me the creeps, so I would personally prefer to avoid set theory when dealing with ontology.
We can use plural language to refer to the set theory domain, to avoid calling it a 'set' [Oliver/Smiley]
     Full Idea: Plurals earn their keep in set theory, to answer Skolem's remark that 'in order to treat of 'sets', we must begin with 'domains' that are constituted in a certain way'. We can speak in the plural of 'the objects', not a 'domain' of objects.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], Intro)
     A reaction: [Skolem 1922:291 in van Heijenoort] Zermelo has said that the domain cannot be a set, because every set belongs to it.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logical truths are true no matter what exists - but predicate calculus insists that something exists [Oliver/Smiley]
     Full Idea: Logical truths should be true no matter what exists, so true even if nothing exists. The classical predicate calculus, however, makes it logically true that something exists.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 5.1)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Which premises are ultimate varies with context [Russell]
     Full Idea: Premises which are ultimate in one investigation may cease to be so in another.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.273)
The sources of a proof are the reasons why we believe its conclusion [Russell]
     Full Idea: In mathematics, except in the earliest parts, the propositions from which a given proposition is deduced generally give the reason why we believe the given proposition.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.273)
Finding the axioms may be the only route to some new results [Russell]
     Full Idea: The premises [of a science] ...are pretty certain to lead to a number of new results which could not otherwise have been known.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.282)
     A reaction: I identify this as the 'fruitfulness' that results when the essence of something is discovered.
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
If mathematics purely concerned mathematical objects, there would be no applied mathematics [Oliver/Smiley]
     Full Idea: If mathematics was purely concerned with mathematical objects, there would be no room for applied mathematics.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 5.1)
     A reaction: Love it! Of course, they are using 'objects' in the rather Fregean sense of genuine abstract entities. I don't see why fictionalism shouldn't allow maths to be wholly 'pure', although we have invented fictions which actually have application.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
It seems absurd to prove 2+2=4, where the conclusion is more certain than premises [Russell]
     Full Idea: It is an apparent absurdity in proceeding ...through many rather recondite propositions of symbolic logic, to the 'proof' of such truisms as 2+2=4: for it is plain that the conclusion is more certain than the premises, and the supposed proof seems futile.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.272)
     A reaction: Famously, 'Principia Mathematica' proved this fact at enormous length. I wonder if this thought led Moore to his common sense view of his own hand - the conclusion being better than the sceptical arguments?
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Sets might either represent the numbers, or be the numbers, or replace the numbers [Oliver/Smiley]
     Full Idea: Identifying numbers with sets may mean one of three quite different things: 1) the sets represent the numbers, or ii) they are the numbers, or iii) they replace the numbers.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 5.2)
     A reaction: Option one sounds the most plausible to me. I will take numbers to be patterns embedded in nature, and sets are one way of presenting them in shorthand form, in order to bring out what is repeated.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Arithmetic was probably inferred from relationships between physical objects [Russell]
     Full Idea: When 2 + 2 =4 was first discovered, it was probably inferred from the case of sheep and other concrete cases.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.272)
11. Knowledge Aims / B. Certain Knowledge / 3. Fallibilism
The most obvious beliefs are not infallible, as other obvious beliefs may conflict [Russell]
     Full Idea: Even where there is the highest degree of obviousness, we cannot assume that we are infallible - a sufficient conflict with other obvious propositions may lead us to abandon our belief, as in the case of a hallucination afterwards recognised as such.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.279)
     A reaction: This approach to fallibilism seems to arise from the paradox that undermined Frege's rather obvious looking axioms. After Peirce and Russell, fallibilism has become a secure norm of modern thought.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / a. Coherence as justification
Believing a whole science is more than believing each of its propositions [Russell]
     Full Idea: Although intrinsic obviousness is the basis of every science, it is never, in a fairly advanced science, the whole of our reason for believing any one proposition of the science.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.279)
14. Science / C. Induction / 2. Aims of Induction
Induction is inferring premises from consequences [Russell]
     Full Idea: The inferring of premises from consequences is the essence of induction.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.274)
     A reaction: So induction is just deduction in reverse? Induction is transcendental deduction? Do I deduce the premises from observing a lot of white swans? Hm.
26. Natural Theory / D. Laws of Nature / 1. Laws of Nature
The law of gravity has many consequences beyond its grounding observations [Russell]
     Full Idea: The law of gravitation leads to many consequences which could not be discovered merely from the apparent motions of the heavenly bodies.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.275)