Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'Regressive Method for Premises in Mathematics' and 'Conceptual truth and metaphysical necessity'

unexpand these ideas     |    start again     |     specify just one area for these texts


26 ideas

1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / e. Philosophy as reason
Discoveries in mathematics can challenge philosophy, and offer it a new foundation [Russell]
     Full Idea: Any new discovery as to mathematical method and principles is likely to upset a great deal of otherwise plausible philosophising, as well as to suggest a new philosophy which will be solid in proportion as its foundations in mathematics are securely laid.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.283)
     A reaction: This is a manifesto for modern analytic philosophy. I'm not convinced, especially if a fictionalist view of maths is plausible. What Russell wants is rigour, but there are other ways of getting that. Currently I favour artificial intelligence.
2. Reason / A. Nature of Reason / 6. Coherence
If one proposition is deduced from another, they are more certain together than alone [Russell]
     Full Idea: Two obvious propositions of which one can be deduced from the other both become more certain than either in isolation; thus in a complicated deductive system, many parts of which are obvious, the total probability may become all but absolute certainty.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.279)
     A reaction: Thagard picked this remark out, in support of his work on coherence.
2. Reason / B. Laws of Thought / 3. Non-Contradiction
Non-contradiction was learned from instances, and then found to be indubitable [Russell]
     Full Idea: The law of contradiction must have been originally discovered by generalising from instances, though, once discovered, it was found to be quite as indubitable as the instances.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.274)
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Which premises are ultimate varies with context [Russell]
     Full Idea: Premises which are ultimate in one investigation may cease to be so in another.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.273)
The sources of a proof are the reasons why we believe its conclusion [Russell]
     Full Idea: In mathematics, except in the earliest parts, the propositions from which a given proposition is deduced generally give the reason why we believe the given proposition.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.273)
Finding the axioms may be the only route to some new results [Russell]
     Full Idea: The premises [of a science] ...are pretty certain to lead to a number of new results which could not otherwise have been known.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.282)
     A reaction: I identify this as the 'fruitfulness' that results when the essence of something is discovered.
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
It seems absurd to prove 2+2=4, where the conclusion is more certain than premises [Russell]
     Full Idea: It is an apparent absurdity in proceeding ...through many rather recondite propositions of symbolic logic, to the 'proof' of such truisms as 2+2=4: for it is plain that the conclusion is more certain than the premises, and the supposed proof seems futile.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.272)
     A reaction: Famously, 'Principia Mathematica' proved this fact at enormous length. I wonder if this thought led Moore to his common sense view of his own hand - the conclusion being better than the sceptical arguments?
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Arithmetic was probably inferred from relationships between physical objects [Russell]
     Full Idea: When 2 + 2 =4 was first discovered, it was probably inferred from the case of sheep and other concrete cases.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.272)
10. Modality / C. Sources of Modality / 4. Necessity from Concepts
The necessity of a proposition concerns reality, not our words or concepts [Stalnaker]
     Full Idea: The necessity or contingency of a proposition has nothing to do with our concepts or the meanings of our words. The possibilities would have been the same even if we had never conceived of them.
     From: Robert C. Stalnaker (Conceptual truth and metaphysical necessity [2003], 1)
     A reaction: This sounds in need of qualification, since some of the propositions will be explicitly about words and concepts. Still, I like this idea.
Conceptual possibilities are metaphysical possibilities we can conceive of [Stalnaker]
     Full Idea: Conceptual possibilities are just (metaphysical) possibilities that we can conceive of.
     From: Robert C. Stalnaker (Conceptual truth and metaphysical necessity [2003], 1)
10. Modality / D. Knowledge of Modality / 3. A Posteriori Necessary
Critics say there are just an a priori necessary part, and an a posteriori contingent part [Stalnaker]
     Full Idea: Critics say there are no irreducible a posteriori truths. They can be factored into a part that is necessary, but knowable a priori through conceptual analysis, and a part knowable only a posteriori, but contingent. 2-D semantics makes this precise.
     From: Robert C. Stalnaker (Conceptual truth and metaphysical necessity [2003], 1)
     A reaction: [Critics are Sidelle, Jackson and Chalmers] Interesting. If gold is necessarily atomic number 79, or it wouldn't be gold, that sounds like an analytic truth about gold. Discovering the 79 wasn't a discovery of a necessity. Stalnaker rejects this idea.
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
A 'centred' world is an ordered triple of world, individual and time [Stalnaker]
     Full Idea: A 'centred' possible world is an ordered triple consisting of a possible world, an individual in the domain of that world, and a time.
     From: Robert C. Stalnaker (Conceptual truth and metaphysical necessity [2003], 2)
11. Knowledge Aims / B. Certain Knowledge / 3. Fallibilism
The most obvious beliefs are not infallible, as other obvious beliefs may conflict [Russell]
     Full Idea: Even where there is the highest degree of obviousness, we cannot assume that we are infallible - a sufficient conflict with other obvious propositions may lead us to abandon our belief, as in the case of a hallucination afterwards recognised as such.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.279)
     A reaction: This approach to fallibilism seems to arise from the paradox that undermined Frege's rather obvious looking axioms. After Peirce and Russell, fallibilism has become a secure norm of modern thought.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / a. Coherence as justification
Believing a whole science is more than believing each of its propositions [Russell]
     Full Idea: Although intrinsic obviousness is the basis of every science, it is never, in a fairly advanced science, the whole of our reason for believing any one proposition of the science.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.279)
14. Science / C. Induction / 2. Aims of Induction
Induction is inferring premises from consequences [Russell]
     Full Idea: The inferring of premises from consequences is the essence of induction.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.274)
     A reaction: So induction is just deduction in reverse? Induction is transcendental deduction? Do I deduce the premises from observing a lot of white swans? Hm.
18. Thought / C. Content / 6. Broad Content
Meanings aren't in the head, but that is because they are abstract [Stalnaker]
     Full Idea: Meanings ain't in the head. Putnam's famous slogan actually fits Frege's anti-psychologism better than it fits Purnam's and Burge's anti-individualism. The point is that intensions of any kind are abstract objects.
     From: Robert C. Stalnaker (Conceptual truth and metaphysical necessity [2003], 2)
     A reaction: If intensions are abstract, that leaves (for me) the question of what they are abstracted from. I take it that there are specific brain events that are being abstractly characterised. What do we call those?
19. Language / B. Reference / 3. Direct Reference / b. Causal reference
One view says the causal story is built into the description that is the name's content [Stalnaker]
     Full Idea: In 'causal descriptivism' the causal story is built into the description that is the content of the name (and also incorporates a rigidifying operator to ensure that the descriptions that names abbreviate have wide scope).
     From: Robert C. Stalnaker (Conceptual truth and metaphysical necessity [2003], 5)
     A reaction: Not very controversial, I would say, since virtually every fact about the world has a 'causal story' built into it. Must we insist on rigidity in order to have wide scope?
19. Language / C. Assigning Meanings / 10. Two-Dimensional Semantics
Two-D says that a posteriori is primary and contingent, and the necessity is the secondary intension [Stalnaker]
     Full Idea: Two-dimensionalism says the necessity of a statement is constituted by the fact that the secondary intensions is a necessary proposition, and their a posteriori character is constituted by the fact that the associated primary intension is contingent.
     From: Robert C. Stalnaker (Conceptual truth and metaphysical necessity [2003], 2)
     A reaction: This view is found in Sidelle 1989, and then formalised by Jackson and Chalmers. I like metaphysical necessity, but I have some sympathy with the approach. The question must always be 'where does this necessity derive from'?
In one view, the secondary intension is metasemantic, about how the thinker relates to the content [Stalnaker]
     Full Idea: On the metasemantic interpretation of the two-dimensional framework, the second dimension is used to represent the metasemantic facts about the relation between a thinker or speaker and the contents of her thoughts or utterances.
     From: Robert C. Stalnaker (Conceptual truth and metaphysical necessity [2003], 4)
     A reaction: I'm struggling to think what facts there might be about the relation between myself and the contents of my thoughts. I'm more or less constituted by my thoughts.
26. Natural Theory / D. Laws of Nature / 1. Laws of Nature
The law of gravity has many consequences beyond its grounding observations [Russell]
     Full Idea: The law of gravitation leads to many consequences which could not be discovered merely from the apparent motions of the heavenly bodies.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.275)