Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'Librium de interpretatione editio secunda' and 'reports'

unexpand these ideas     |    start again     |     specify just one area for these texts


8 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
9. Objects / A. Existence of Objects / 5. Individuation / d. Individuation by haecceity
We can call the quality of Plato 'Platonity', and say it is a quality which only he possesses [Boethius]
     Full Idea: Let the incommunicable property of Plato be called 'Platonity'. For we can call this quality 'Platonity' by a fabricated word, in the way in which we call the quality of man 'humanity'. Therefore this Platonity is one man's alone - Plato's.
     From: Boethius (Librium de interpretatione editio secunda [c.516], PL64 462d), quoted by Alvin Plantinga - Actualism and Possible Worlds 5
     A reaction: Plantinga uses this idea to reinstate the old notion of a haecceity, to bestow unshakable identity on things. My interest in the quotation is that the most shocking confusions about properties arose long before the invention of set theory.
25. Social Practice / D. Justice / 3. Punishment / c. Deterrence of crime
The greatest deterrence for injustice is if uninjured parties feel as much indignation as those who are injured [Solon, by Diog. Laertius]
     Full Idea: Men can be most effectively deterred from committing injustice if those who are not injured feel as much indignation as those who are.
     From: report of Solon (reports [c.600 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 01.So.10