Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'On the Concept of Number' and 'What Metaphors Mean'

unexpand these ideas     |    start again     |     specify just one area for these texts


10 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Hilbert said (to block paradoxes) that mathematical existence is entailed by consistency [Hilbert, by Potter]
     Full Idea: Hilbert proposed to circuvent the paradoxes by means of the doctrine (already proposed by Poincaré) that in mathematics consistency entails existence.
     From: report of David Hilbert (On the Concept of Number [1900], p.183) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 19 'Exist'
     A reaction: Interesting. Hilbert's idea has struck me as weird, but it makes sense if its main motive is to block the paradoxes. Roughly, the idea is 'it exists if it isn't paradoxical'. A low bar for existence (but then it is only in mathematics!).
19. Language / F. Communication / 6. Interpreting Language / d. Metaphor
Metaphors just mean what their words literally mean [Davidson]
     Full Idea: Metaphors mean what the words, in their most literal interpretation, mean, and nothing more.
     From: Donald Davidson (What Metaphors Mean [1978], p.30)
     A reaction: This pronouncement must be the result of Davidson anguishing over the truth conditions for metaphors, which are usually either taken to have a 'metaphorical meaning', or to be abbreviated similes. He solved his problem at a stroke! Plausible.
We accept a metaphor when we see the sentence is false [Davidson]
     Full Idea: It is only when a sentence is taken to be false that we accept it as a metaphor.
     From: Donald Davidson (What Metaphors Mean [1978], p.40)
     A reaction: This strikes me as a very nice and true generalisation, even though Davidson mentions "no man is an island" as a counterexample. We thirst for meaning, and switch to a second meaning when the first one looks peculiar.
Understanding a metaphor is a creative act, with no rules [Davidson]
     Full Idea: Understanding a metaphor is as much a creative endeavour as making a metaphor, and as little guided by rules.
     From: Donald Davidson (What Metaphors Mean [1978], p.29)
     A reaction: This is good news for literature studies courses. Davidson's point is that the metaphor itself only gives you a literal meaning, so it doesn't tell you how to interpret it. It seems an attractive proposal.