Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'The Structure and Content of Truth' and 'The Status of Content'

unexpand these ideas     |    start again     |     specify just one area for these texts


8 ideas

3. Truth / C. Correspondence Truth / 3. Correspondence Truth critique
Correspondence theories can't tell you what truths correspond to [Davidson]
     Full Idea: The real objection to correspondence theories is that such theories fail to provide entities to which truth vehicles (as statements, sentence, or utterances) can be said to correspond.
     From: Donald Davidson (The Structure and Content of Truth [1990], p.304), quoted by Fred Sommers - Intellectual Autobiography Notes 23
     A reaction: This is the remark which provoked Sommers to come out with Idea 18901, which strikes me as rather profound.
3. Truth / H. Deflationary Truth / 3. Minimalist Truth
Minimalism is incoherent, as it implies that truth both is and is not a property [Boghossian, by Horwich]
     Full Idea: Boghossian argues that minimalism is incoherent because it says truth both is and is not a property; the essence of minimalism is that, unlike traditional theories, truth is not a property, yet properties are needed to explain the theory.
     From: report of Paul Boghossian (The Status of Content [1990]) by Paul Horwich - Truth (2nd edn) Post.8
     A reaction: I doubt whether this is really going to work as a demolition, because it seems to me that no philosophers are even remotely clear about what a property is. If properties are defined causally, it is not quite clear how truth would ever be a property.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)