Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'Do Conditionals Have Truth Conditions?' and 'The Structure of Science'

unexpand these ideas     |    start again     |     specify just one area for these texts


12 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
7. Existence / C. Structure of Existence / 2. Reduction
Reduction has been defined as deriving one theory from another by logic and maths [Nagel,E, by Kim]
     Full Idea: Ernest Nagel defines reduction as the possibility of deriving all laws of one theory by logic and mathematics to another theory, with appropriate 'bridging principles' (either definitions, or empirical laws) connecting the expressions of the two theories.
     From: report of Ernest Nagel (The Structure of Science [1961]) by Jaegwon Kim - Philosophy of Mind p.213
     A reaction: This has been labelled as 'weak' reduction, where 'strong' reduction would be identity, as when lightning is reduced to electrical discharge. You reduce x by showing that it is y in disguise.
10. Modality / B. Possibility / 6. Probability
Truth-functional possibilities include the irrelevant, which is a mistake [Edgington]
     Full Idea: How likely is a fair die landing on an even number to land six? My approach is, assume an even number, so three possibilities, one a six, so 'one third'; the truth-functional approach is it's true if it is not-even or six, so 'two-thirds'.
     From: Dorothy Edgington (Do Conditionals Have Truth Conditions? [1986], 3)
     A reaction: The point is that in the truth-functional approach, if the die lands not-even, then the conditional comes out as true, when she says it should be irrelevant. She seems to be right about this.
10. Modality / B. Possibility / 8. Conditionals / a. Conditionals
It is a mistake to think that conditionals are statements about how the world is [Edgington]
     Full Idea: The mistake philosophers have made, in trying to understand the conditional, is to assume that its function is to make a statement about how the world is (or how other possible worlds are related to it), true or false, as the case may be.
     From: Dorothy Edgington (Do Conditionals Have Truth Conditions? [1986], 1)
     A reaction: 'If pigs could fly we would never catch them' may not be about the world, but 'if you press this switch the light comes on' seems to be. Actually even the first one is about the world. I've an inkling that Edgington is wrong about this. Powers!
10. Modality / B. Possibility / 8. Conditionals / d. Non-truthfunction conditionals
A conditional does not have truth conditions [Edgington]
     Full Idea: A conditional does not have truth conditions.
     From: Dorothy Edgington (Do Conditionals Have Truth Conditions? [1986], 1)
X believes 'if A, B' to the extent that A & B is more likely than A & ¬B [Edgington]
     Full Idea: X believes that if A, B, to the extent that he judges that A & B is nearly as likely as A, or (roughly equivalently) to the extent that he judges A & B to be more likely than A & ¬B.
     From: Dorothy Edgington (Do Conditionals Have Truth Conditions? [1986], 5)
     A reaction: This is a formal statement of her theory of conditionals.
10. Modality / B. Possibility / 8. Conditionals / e. Supposition conditionals
Conditionals express what would be the outcome, given some supposition [Edgington]
     Full Idea: It is often necessary to suppose (or assume) that some epistemic possibility is true, and to consider what else would be the case, or would be likely to be the case, given this supposition. The conditional expresses the outcome of such thought processes.
     From: Dorothy Edgington (Do Conditionals Have Truth Conditions? [1986], 1)
     A reaction: This is the basic Edgington view. It seems to involve an active thought process, and imagination, rather than being the static semantic relations offered by possible worlds analyses. True conditionals state relationships in the world.