Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'Pacidius Philalethi dialogue' and 'Remarks on the Foundations of Mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


9 ideas

3. Truth / H. Deflationary Truth / 1. Redundant Truth
'It is true that this follows' means simply: this follows [Wittgenstein]
     Full Idea: The proposition: "It is true that this follows from that" means simply: this follows from that.
     From: Ludwig Wittgenstein (Remarks on the Foundations of Mathematics [1938], p.38), quoted by Robert Hanna - Rationality and Logic 6
     A reaction: Presumably this remark is simply expressing Wittgenstein's later agreement with the well-known view of Ramsey. Early Wittgenstein had endorsed a correspondence view of truth.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Two and one making three has the necessity of logical inference [Wittgenstein]
     Full Idea: "But doesn't it follow with logical necessity that you get two when you add one to one, and three when you add one to two? and isn't this inexorability the same as that of logical inference? - Yes! it is the same.
     From: Ludwig Wittgenstein (Remarks on the Foundations of Mathematics [1938], p.38), quoted by Robert Hanna - Rationality and Logic 6
     A reaction: This need not be a full commitment to logicism - only to the fact that the inferential procedures in mathematics are the same as those of logic. Mathematics could still have further non-logical ingredients. Indeed, I think it probably does.
9. Objects / C. Structure of Objects / 8. Parts of Objects / a. Parts of objects
Indivisibles are not parts, but the extrema of parts [Leibniz]
     Full Idea: Indivisibles are not parts, but the extrema of parts.
     From: Gottfried Leibniz (Pacidius Philalethi dialogue [1676], A6.3.565-6), quoted by Daniel Garber - Leibniz:Body,Substance,Monad 1
     A reaction: This is incipient monadology, that the bottom level of division ceases to be parts of a thing, and arrives at a different order of entity, to explain the parts of things. Leibniz denies that this subdivision comes down to points.