Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'Letters to Samuel Masson' and 'Life of Theseus'

unexpand these ideas     |    start again     |     specify just one area for these texts


8 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
I don't admit infinite numbers, and consider infinitesimals to be useful fictions [Leibniz]
     Full Idea: Notwithstanding my infinitesimal calculus, I do not admit any real infinite numbers, even though I confess that the multitude of things surpasses any finite number, or rather any number. ..I consider infinitesimal quantities to be useful fictions.
     From: Gottfried Leibniz (Letters to Samuel Masson [1716], 1716)
     A reaction: With the phrase 'useful fictions' we seem to have jumped straight into Harty Field. I'm with Leibniz on this one. The history of mathematics is a series of ingenious inventions, whenever they seem to make further exciting proofs possible.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
9. Objects / E. Objects over Time / 9. Ship of Theseus
Replacing timbers on Theseus' ship was the classic illustration of the problem of growth and change [Plutarch]
     Full Idea: At intervals they removed old timbers from the preserved ship and replaced them with sound ones, so the ship became a classic illustration for the philosophers of the disputed question of growth and change, some saying it was the same, others different.
     From: Plutarch (Life of Theseus [c.85], 23)