Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'Life of Pythagoras' and 'The Gettier Problem'

unexpand these ideas     |    start again     |     specify just one area for these texts


8 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
13. Knowledge Criteria / A. Justification Problems / 2. Justification Challenges / b. Gettier problem
A Gettier case is a belief which is true, and its fallible justification involves some luck [Hetherington]
     Full Idea: A Gettier case contains a belief which is true and well justified without being knowledge. Its justificatory support is also fallible, ...and there is considerable luck in how the belief combnes being true with being justified.
     From: Stephen Hetherington (The Gettier Problem [2011], 5)
     A reaction: This makes luck the key factor. 'Luck' is a rather vague concept, and so the sort of luck involved must first be spelled out. Or the varieties of luck that can produce this outcome.
28. God / A. Divine Nature / 6. Divine Morality / b. Euthyphro question
Pythagoreans believe it is absurd to seek for goodness anywhere except with the gods [Iamblichus]
     Full Idea: The thinking behind Pythagorean philosophy is that people behave in an absurd fashion if they try to find any source for the good other than the gods.
     From: Iamblichus (Life of Pythagoras [c.290], 137)