Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'Introduction to the Theory of Logic' and 'The Poetics'

unexpand these ideas     |    start again     |     specify just one area for these texts


26 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Sets can be defined by 'enumeration', or by 'abstraction' (based on a property) [Zalabardo]
     Full Idea: We can define a set by 'enumeration' (by listing the items, within curly brackets), or by 'abstraction' (by specifying the elements as instances of a property), pretending that they form a determinate totality. The latter is written {x | x is P}.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.3)
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'Cartesian Product' of two sets relates them by pairing every element with every element [Zalabardo]
     Full Idea: The 'Cartesian Product' of two sets, written A x B, is the relation which pairs every element of A with every element of B. So A x B = { | x ∈ A and y ∈ B}.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.6)
A 'partial ordering' is reflexive, antisymmetric and transitive [Zalabardo]
     Full Idea: A binary relation in a set is a 'partial ordering' just in case it is reflexive, antisymmetric and transitive.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Determinacy: an object is either in a set, or it isn't [Zalabardo]
     Full Idea: Principle of Determinacy: For every object a and every set S, either a is an element of S or a is not an element of S.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.2)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / l. Axiom of Specification
Specification: Determinate totals of objects always make a set [Zalabardo]
     Full Idea: Principle of Specification: Whenever we can specify a determinate totality of objects, we shall say that there is a set whose elements are precisely the objects that we have specified.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §1.3)
     A reaction: Compare the Axiom of Specification. Zalabardo says we may wish to consider sets of which we cannot specify the members.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
A first-order 'sentence' is a formula with no free variables [Zalabardo]
     Full Idea: A formula of a first-order language is a 'sentence' just in case it has no free variables.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.2)
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Γ |= φ for sentences if φ is true when all of Γ is true [Zalabardo]
     Full Idea: A propositional logic sentence is a 'logical consequence' of a set of sentences (written Γ |= φ) if for every admissible truth-assignment all the sentences in the set Γ are true, then φ is true.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.4)
     A reaction: The definition is similar for predicate logic.
Γ |= φ if φ is true when all of Γ is true, for all structures and interpretations [Zalabardo]
     Full Idea: A formula is the 'logical consequence' of a set of formulas (Γ |= φ) if for every structure in the language and every variable interpretation of the structure, if all the formulas within the set are true and the formula itself is true.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.5)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / b. Basic connectives
Propositional logic just needs ¬, and one of ∧, ∨ and → [Zalabardo]
     Full Idea: In propositional logic, any set containing ¬ and at least one of ∧, ∨ and → is expressively complete.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.8)
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
The semantics shows how truth values depend on instantiations of properties and relations [Zalabardo]
     Full Idea: The semantic pattern of a first-order language is the ways in which truth values depend on which individuals instantiate the properties and relations which figure in them. ..So we pair a truth value with each combination of individuals, sets etc.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.3)
     A reaction: So truth reduces to a combination of 'instantiations', which is rather like 'satisfaction'.
We can do semantics by looking at given propositions, or by building new ones [Zalabardo]
     Full Idea: We can look at semantics from the point of view of how truth values are determined by instantiations of properties and relations, or by asking how we can build, using the resources of the language, a proposition corresponding to a given semantic pattern.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.6)
     A reaction: The second version of semantics is model theory.
5. Theory of Logic / I. Semantics of Logic / 2. Formal Truth
We make a truth assignment to T and F, which may be true and false, but merely differ from one another [Zalabardo]
     Full Idea: A truth assignment is a function from propositions to the set {T,F}. We will think of T and F as the truth values true and false, but for our purposes all we need to assume about the identity of these objects is that they are different from each other.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.4)
     A reaction: Note that T and F are 'objects'. This remark is important in understanding modern logical semantics. T and F can be equated to 1 and 0 in the language of a computer. They just mean as much as you want them to mean.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logically true sentences are true in all structures [Zalabardo]
     Full Idea: In first-order languages, logically true sentences are true in all structures.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.5)
'Logically true' (|= φ) is true for every truth-assignment [Zalabardo]
     Full Idea: A propositional logic sentence is 'logically true', written |= φ, if it is true for every admissible truth-assignment.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.4)
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
Some formulas are 'satisfiable' if there is a structure and interpretation that makes them true [Zalabardo]
     Full Idea: A set of formulas of a first-order language is 'satisfiable' if there is a structure and a variable interpretation in that structure such that all the formulas of the set are true.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.5)
A sentence-set is 'satisfiable' if at least one truth-assignment makes them all true [Zalabardo]
     Full Idea: A propositional logic set of sentences Γ is 'satisfiable' if there is at least one admissible truth-assignment that makes all of its sentences true.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.4)
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A structure models a sentence if it is true in the model, and a set of sentences if they are all true in the model [Zalabardo]
     Full Idea: A structure is a model of a sentence if the sentence is true in the model; a structure is a model of a set of sentences if they are all true in the structure.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §3.6)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
If a set is defined by induction, then proof by induction can be applied to it [Zalabardo]
     Full Idea: Defining a set by induction enables us to use the method of proof by induction to establish that all the elements of the set have a certain property.
     From: José L. Zalabardo (Introduction to the Theory of Logic [2000], §2.3)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
10. Modality / B. Possibility / 1. Possibility
The actual must be possible, because it occurred [Aristotle]
     Full Idea: Actual events are evidently possible, otherwise they would not have occurred.
     From: Aristotle (The Poetics [c.347 BCE], 1451b18)
     A reaction: [quoted online by Peter Adamson] Seems like common sense, but it's important to have Aristotle assert it.
21. Aesthetics / B. Nature of Art / 8. The Arts / b. Literature
Poetry is more philosophic than history, as it concerns universals, not particulars [Aristotle]
     Full Idea: Poetry is something more philosophic and of graver import than history, since its statements are rather of universals, whereas those of history are singulars.
     From: Aristotle (The Poetics [c.347 BCE], 1451b05)
     A reaction: Hm. Characters in great novels achieve universality by being representated very particularly. Great depth of mind seems required to be a poet, but less so for a historian (though there is, I presume, no upward limit on the possible level of thought).