Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'Philosophy of Mathematics' and 'Nominalism'

unexpand these ideas     |    start again     |     specify just one area for these texts


14 ideas

2. Reason / D. Definition / 8. Impredicative Definition
Predicative definitions only refer to entities outside the defined collection [Horsten]
     Full Idea: Definitions are called 'predicative', and are considered sound, if they only refer to entities which exist independently from the defined collection.
     From: Leon Horsten (Philosophy of Mathematics [2007], §2.4)
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
What is a singleton set, if a set is meant to be a collection of objects? [Szabó]
     Full Idea: The relationship between an object and its singleton is puzzling. Our intuitive conception of a set is a collection of objects - what are we to make of a collection of a single object?
     From: Zoltán Gendler Szabó (Nominalism [2003], 4.1)
     A reaction: The ontological problem seems to be the same as that of the empty set, and indeed the claim that a pair of entities is three things. For logicians the empty set is as real as a pet dog, but not for me.
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
A theory is 'categorical' if it has just one model up to isomorphism [Horsten]
     Full Idea: If a theory has, up to isomorphism, exactly one model, then it is said to be 'categorical'.
     From: Leon Horsten (Philosophy of Mathematics [2007], §5.2)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
Computer proofs don't provide explanations [Horsten]
     Full Idea: Mathematicians are uncomfortable with computerised proofs because a 'good' proof should do more than convince us that a certain statement is true. It should also explain why the statement in question holds.
     From: Leon Horsten (Philosophy of Mathematics [2007], §5.3)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
The concept of 'ordinal number' is set-theoretic, not arithmetical [Horsten]
     Full Idea: The notion of an ordinal number is a set-theoretic, and hence non-arithmetical, concept.
     From: Leon Horsten (Philosophy of Mathematics [2007], §2.3)
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
Abstract entities don't depend on their concrete entities ...but maybe on the totality of concrete things [Szabó]
     Full Idea: It is better not to include in the definition of abstract entities that they ontologically depend on their concrete correlates. Note: ..but they may depend on the totality of concreta; maybe 'the supervenience of the abstract' is part of ordinary thought.
     From: Zoltán Gendler Szabó (Nominalism [2003], 2.2)
     A reaction: [the quoted phrase is from Gideon Rosen] It certainly seems unlikely that the concept of the perfect hexagon depends on a perfect hexagon having existed. Human minds have intervened between the concrete and the abstract.
15. Nature of Minds / C. Capacities of Minds / 3. Abstraction by mind
Geometrical circles cannot identify a circular paint patch, presumably because they lack something [Szabó]
     Full Idea: The vocabulary of geometry is sufficient to identify the circle, but could not be used to identify any circular paint patch. The reason must be that the circle lacks certain properties that can distinguish paint patches from one another.
     From: Zoltán Gendler Szabó (Nominalism [2003], 2.2)
     A reaction: I take this to be support for the traditional view, that abstractions are created by omitting some of the properties of physical objects. I take them to be fictional creations, reified by language, and not actual hidden entities that have been observed.
18. Thought / E. Abstraction / 5. Abstracta by Negation
Abstractions are imperceptible, non-causal, and non-spatiotemporal (the third explaining the others) [Szabó]
     Full Idea: In current discussions, abstract entities are usually distinguished as 1) in principle imperceptible, 2) incapable of causal interaction, 3) not located in space-time. The first is often explained by the second, which is in turn explained by the third.
     From: Zoltán Gendler Szabó (Nominalism [2003], 2.2)
     A reaction: Szabó concludes by offering 3 as the sole criterion of abstraction. As Lewis points out, the Way of Negation for defining abstracta doesn't tell us very much. Courage may be non-spatiotemporal, but what about Alexander the Great's courage?