Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'Mathematics, Science and Language' and 'Truth'

unexpand these ideas     |    start again     |     specify just one area for these texts


10 ideas

3. Truth / C. Correspondence Truth / 1. Correspondence Truth
True sentences says the appropriate descriptive thing on the appropriate demonstrative occasion [Austin,JL]
     Full Idea: A sentence is said to be true when the historic state of affairs to which it is correlated by the demonstrative conventions (the one to which it 'refers') is of a type with which the sentence used in making it is correlated by the descriptive conventions.
     From: J.L. Austin (Truth [1950], §3)
     A reaction: This is correspondence by convention rather than correspondence by mapping. Personally I prefer some sort of mapping account, despite all the difficulty and vagueness of specifying what maps onto what.
3. Truth / C. Correspondence Truth / 3. Correspondence Truth critique
Correspondence theorists shouldn't think that a country has just one accurate map [Austin,JL]
     Full Idea: Correspondence theorists too often talk as one would who held that every map is either accurate or inaccurate; that every country can have but one accurate map.
     From: J.L. Austin (Truth [1950], n 24)
     A reaction: A well-made point, for those who intuitively hang on to correspondence as not only good common sense, but also some sort of salvation for a realist view of the world which might give us certainty in epistemology.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is a mental activity which does not use language [Brouwer, by Bostock]
     Full Idea: Brouwer made the rather extraordinary claim that mathematics is a mental activity which uses no language.
     From: report of Luitzen E.J. Brouwer (Mathematics, Science and Language [1928]) by David Bostock - Philosophy of Mathematics 7.1
     A reaction: Since I take language to have far less of a role in thought than is commonly believed, I don't think this idea is absurd. I would say that we don't use language much when we are talking!
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Brouwer regards the application of mathematics to the world as somehow 'wicked' [Brouwer, by Bostock]
     Full Idea: Brouwer regards as somehow 'wicked' the idea that mathematics can be applied to a non-mental subject matter, the physical world, and that it might develop in response to the needs which that application reveals.
     From: report of Luitzen E.J. Brouwer (Mathematics, Science and Language [1928]) by David Bostock - Philosophy of Mathematics 7.1
     A reaction: The idea is that mathematics only concerns creations of the human mind. It presumably has no more application than, say, noughts-and-crosses.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)