Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'First-Order Modal Logic' and 'Concepts'

unexpand these ideas     |    start again     |     specify just one area for these texts


73 ideas

1. Philosophy / F. Analytic Philosophy / 7. Limitations of Analysis
Naturalistic philosophers oppose analysis, preferring explanation to a priori intuition [Margolis/Laurence]
     Full Idea: Philosophers who oppose conceptual analysis identify their approach as being 'naturalistic'. Philosophy is supposed to be continuous with science, and philosophical theories are to be defended on explanatory grounds, not by a priori intuitions.
     From: E Margolis/S Laurence (Concepts [2009], 5.2)
     A reaction: [They cite Papineau 1993, Devitt 1996 aand Kornblith 2002] I think there is a happy compromise here. I agree that any philosophical knowledge should be continuous with science, but we shouldn't prejudge how the analytic branch of science is done.
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Each line of a truth table is a model [Fitting/Mendelsohn]
     Full Idea: Each line of a truth table is, in effect, a model.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
     A reaction: I find this comment illuminating. It is being connected with the more complex models of modal logic. Each line of a truth table is a picture of how the world might be.
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / a. Symbols of ML
Modal logic adds □ (necessarily) and ◊ (possibly) to classical logic [Fitting/Mendelsohn]
     Full Idea: For modal logic we add to the syntax of classical logic two new unary operators □ (necessarily) and ◊ (possibly).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.3)
We let 'R' be the accessibility relation: xRy is read 'y is accessible from x' [Fitting/Mendelsohn]
     Full Idea: We let 'R' be the accessibility relation: xRy is read 'y is accessible from x'.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.5)
The symbol ||- is the 'forcing' relation; 'Γ ||- P' means that P is true in world Γ [Fitting/Mendelsohn]
     Full Idea: The symbol ||- is used for the 'forcing' relation, as in 'Γ ||- P', which means that P is true in world Γ.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
The prefix σ names a possible world, and σ.n names a world accessible from that one [Fitting/Mendelsohn]
     Full Idea: A 'prefix' is a finite sequence of positive integers. A 'prefixed formula' is an expression of the form σ X, where σ is a prefix and X is a formula. A prefix names a possible world, and σ.n names a world accessible from that one.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / b. Terminology of ML
A 'constant' domain is the same for all worlds; 'varying' domains can be entirely separate [Fitting/Mendelsohn]
     Full Idea: In 'constant domain' semantics, the domain of each possible world is the same as every other; in 'varying domain' semantics, the domains need not coincide, or even overlap.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.5)
Modern modal logic introduces 'accessibility', saying xRy means 'y is accessible from x' [Fitting/Mendelsohn]
     Full Idea: Modern modal logic takes into consideration the way the modal relates the possible worlds, called the 'accessibility' relation. .. We let R be the accessibility relation, and xRy reads as 'y is accessible from x.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.5)
     A reaction: There are various types of accessibility, and these define the various modal logics.
A 'model' is a frame plus specification of propositions true at worlds, written < G,R,||- > [Fitting/Mendelsohn]
     Full Idea: A 'model' is a frame plus a specification of which propositional letters are true at which worlds. It is written as , where ||- is a relation between possible worlds and propositional letters. So Γ ||- P means P is true at world Γ.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
A 'frame' is a set G of possible worlds, with an accessibility relation R, written < G,R > [Fitting/Mendelsohn]
     Full Idea: A 'frame' consists of a non-empty set G, whose members are generally called possible worlds, and a binary relation R, on G, generally called the accessibility relation. We say the frame is the pair so that a single object can be talked about.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
Accessibility relations can be 'reflexive' (self-referring), 'transitive' (carries over), or 'symmetric' (mutual) [Fitting/Mendelsohn]
     Full Idea: A relation R is 'reflexive' if every world is accessible from itself; 'transitive' if the first world is related to the third world (ΓRΔ and ΔRΩ → ΓRΩ); and 'symmetric' if the accessibility relation is mutual.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.7)
     A reaction: The different systems of modal logic largely depend on how these accessibility relations are specified. There is also the 'serial' relation, which just says that any world has another world accessible to it.
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / c. Derivation rules of ML
Conj: a) if σ X∧Y then σ X and σ Y b) if σ ¬(X∧Y) then σ ¬X or σ ¬Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for conjunctions: a) if σ X ∧ Y then σ X and σ Y b) if σ ¬(X ∧ Y) then σ ¬X or σ ¬Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Bicon: a)if σ(X↔Y) then σ(X→Y) and σ(Y→X) b) [not biconditional, one or other fails] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for biconditionals: a) if σ (X ↔ Y) then σ (X → Y) and σ (Y → X) b) if σ ¬(X ↔ Y) then σ ¬(X → Y) or σ ¬(Y → X)
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Universal: a) if σ ¬◊X then σ.m ¬X b) if σ □X then σ.m X [m exists] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for universal modality: a) if σ ¬◊ X then σ.m ¬X b) if σ □ X then σ.m X , where m refers to a world that can be seen (rather than introducing a new world).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
     A reaction: Note that the universal rule of □, usually read as 'necessary', only refers to worlds which can already be seen, whereas possibility (◊) asserts some thing about a new as yet unseen world.
Implic: a) if σ ¬(X→Y) then σ X and σ ¬Y b) if σ X→Y then σ ¬X or σ Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for implications: a) if σ ¬(X → Y) then σ X and σ ¬Y b) if σ X → Y then σ ¬X or σ Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
4r rev-trans: a) if σ.n □X then σ □X b) if σ.n ¬◊X then σ ¬◊X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System 4r reversed-transitive rules (also for S5): a) if σ.n □X then σ □X b) if σ.n ¬◊X then σ ¬◊X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
Negation: if σ ¬¬X then σ X [Fitting/Mendelsohn]
     Full Idea: General tableau rule for negation: if σ ¬¬X then σ X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Disj: a) if σ ¬(X∨Y) then σ ¬X and σ ¬Y b) if σ X∨Y then σ X or σ Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for disjunctions: a) if σ ¬(X ∨ Y) then σ ¬X and σ ¬Y b) if σ X ∨ Y then σ X or σ Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Existential: a) if σ ◊X then σ.n X b) if σ ¬□X then σ.n ¬X [n is new] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for existential modality: a) if σ ◊ X then σ.n X b) if σ ¬□ X then σ.n ¬X , where n introduces some new world (rather than referring to a world that can be seen).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
     A reaction: Note that the existential rule of ◊, usually read as 'possibly', asserts something about a new as yet unseen world, whereas □ only refers to worlds which can already be seen,
T reflexive: a) if σ □X then σ X b) if σ ¬◊X then σ ¬X [Fitting/Mendelsohn]
     Full Idea: System T reflexive rules (also for B, S4, S5): a) if σ □X then σ X b) if σ ¬◊X then σ ¬X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
D serial: a) if σ □X then σ ◊X b) if σ ¬◊X then σ ¬□X [Fitting/Mendelsohn]
     Full Idea: System D serial rules (also for T, B, S4, S5): a) if σ □X then σ ◊X b) if σ ¬◊X then σ ¬□X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
B symmetric: a) if σ.n □X then σ X b) if σ.n ¬◊X then σ ¬X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System B symmetric rules (also for S5): a) if σ.n □X then σ X b) if σ.n ¬◊X then σ ¬X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
4 transitive: a) if σ □X then σ.n □X b) if σ ¬◊X then σ.n ¬◊X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System 4 transitive rules (also for K4, S4, S5): a) if σ □X then σ.n □X b) if σ ¬◊X then σ.n ¬◊X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
S5: a) if n ◊X then kX b) if n ¬□X then k ¬X c) if n □X then k X d) if n ¬◊X then k ¬X [Fitting/Mendelsohn]
     Full Idea: Simplified S5 rules: a) if n ◊X then kX b) if n ¬□X then k ¬X c) if n □X then k X d) if n ¬◊X then k ¬X. 'n' picks any world; in a) and b) 'k' asserts a new world; in c) and d) 'k' refers to a known world
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
If a proposition is necessarily true in a world, it is true in all worlds accessible from that world [Fitting/Mendelsohn]
     Full Idea: If a proposition is necessarily true in a world, then it is also true in all worlds which are accessible from that world. That is: Γ ||- □X ↔ for every Δ ∈ G, if ΓRΔ then Δ ||- X.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
If a proposition is possibly true in a world, it is true in some world accessible from that world [Fitting/Mendelsohn]
     Full Idea: If a proposition is possibly true in a world, then it is also true in some world which is accessible from that world. That is: Γ ||- ◊X ↔ for some Δ ∈ G, ΓRΔ then Δ ||- X.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / b. System K
The system K has no accessibility conditions [Fitting/Mendelsohn]
     Full Idea: The system K has no frame conditions imposed on its accessibility relation.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
     A reaction: The system is named K in honour of Saul Kripke.
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / c. System D
□P → P is not valid in D (Deontic Logic), since an obligatory action may be not performed [Fitting/Mendelsohn]
     Full Idea: System D is usually thought of as Deontic Logic, concerning obligations and permissions. □P → P is not valid in D, since just because an action is obligatory, it does not follow that it is performed.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.12.2 Ex)
The system D has the 'serial' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system D has the 'serial' condition imposed on its accessibility relation - that is, every world must have some world which is accessible to it.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / d. System T
The system T has the 'reflexive' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system T has the 'reflexive' condition imposed on its accessibility relation - that is, every world must be accessible to itself.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / e. System K4
The system K4 has the 'transitive' condition on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system K4 has the 'transitive' condition imposed on its accessibility relation - that is, if a relation holds between worlds 1 and 2 and worlds 2 and 3, it must hold between worlds 1 and 3. The relation carries over.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / f. System B
The system B has the 'reflexive' and 'symmetric' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system B has the 'reflexive' and 'symmetric' conditions imposed on its accessibility relation - that is, every world must be accessible to itself, and any relation between worlds must be mutual.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
The system S4 has the 'reflexive' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system S4 has the 'reflexive' and 'transitive' conditions imposed on its accessibility relation - that is, every world is accessible to itself, and accessibility carries over a series of worlds.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
System S5 has the 'reflexive', 'symmetric' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system S5 has the 'reflexive', 'symmetric' and 'transitive' conditions imposed on its accessibility relation - that is, every world is self-accessible, and accessibility is mutual, and it carries over a series of worlds.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
     A reaction: S5 has total accessibility, and hence is the most powerful system (though it might be too powerful).
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
Modality affects content, because P→◊P is valid, but ◊P→P isn't [Fitting/Mendelsohn]
     Full Idea: P→◊P is usually considered to be valid, but its converse, ◊P→P is not, so (by Frege's own criterion) P and possibly-P differ in conceptual content, and there is no reason why logic should not be widened to accommodate this.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.2)
     A reaction: Frege had denied that modality affected the content of a proposition (1879:p.4). The observation here is the foundation for the need for a modal logic.
4. Formal Logic / D. Modal Logic ML / 5. Epistemic Logic
In epistemic logic knowers are logically omniscient, so they know that they know [Fitting/Mendelsohn]
     Full Idea: In epistemic logic the knower is treated as logically omniscient. This is puzzling because one then cannot know something and yet fail to know that one knows it (the Principle of Positive Introspection).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.11)
     A reaction: This is nowadays known as the K-K Problem - to know, must you know that you know. Broadly, we find that externalists say you don't need to know that you know (so animals know things), but internalists say you do need to know that you know.
Read epistemic box as 'a knows/believes P' and diamond as 'for all a knows/believes, P' [Fitting/Mendelsohn]
     Full Idea: In epistemic logic we read Υ as 'KaP: a knows that P', and ◊ as 'PaP: it is possible, for all a knows, that P' (a is an individual). For belief we read them as 'BaP: a believes that P' and 'CaP: compatible with everything a believes that P'.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.11)
     A reaction: [scripted capitals and subscripts are involved] Hintikka 1962 is the source of this. Fitting and Mendelsohn prefer □ to read 'a is entitled to know P', rather than 'a knows that P'.
4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
F: will sometime, P: was sometime, G: will always, H: was always [Fitting/Mendelsohn]
     Full Idea: We introduce four future and past tense operators: FP: it will sometime be the case that P. PP: it was sometime the case that P. GP: it will always be the case that P. HP: it has always been the case that P. (P itself is untensed).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.10)
     A reaction: Temporal logic begins with A.N. Prior, and starts with □ as 'always', and ◊ as 'sometimes', but then adds these past and future divisions. Two different logics emerge, taking □ and ◊ as either past or as future.
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The Barcan says nothing comes into existence; the Converse says nothing ceases; the pair imply stability [Fitting/Mendelsohn]
     Full Idea: The Converse Barcan says nothing passes out of existence in alternative situations. The Barcan says that nothing comes into existence. The two together say the same things exist no matter what the situation.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.9)
     A reaction: I take the big problem to be that these reflect what it is you want to say, and that does not keep stable across a conversation, so ordinary rational discussion sometimes asserts these formulas, and 30 seconds later denies them.
The Barcan corresponds to anti-monotonicity, and the Converse to monotonicity [Fitting/Mendelsohn]
     Full Idea: The Barcan formula corresponds to anti-monotonicity, and the Converse Barcan formula corresponds to monotonicity.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 6.3)
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
'Predicate abstraction' abstracts predicates from formulae, giving scope for constants and functions [Fitting/Mendelsohn]
     Full Idea: 'Predicate abstraction' is a key idea. It is a syntactic mechanism for abstracting a predicate from a formula, providing a scoping mechanism for constants and function symbols similar to that provided for variables by quantifiers.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], Pref)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The Indiscernibility of Identicals has been a big problem for modal logic [Fitting/Mendelsohn]
     Full Idea: Equality has caused much grief for modal logic. Many of the problems, which have struck at the heart of the coherence of modal logic, stem from the apparent violations of the Indiscernibility of Identicals.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 7.1)
     A reaction: Thus when I say 'I might have been three inches taller', presumably I am referring to someone who is 'identical' to me, but who lacks one of my properties. A simple solution is to say that the person is 'essentially' identical.
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
□ must be sensitive as to whether it picks out an object by essential or by contingent properties [Fitting/Mendelsohn]
     Full Idea: If □ is to be sensitive to the quality of the truth of a proposition in its scope, then it must be sensitive as to whether an object is picked out by an essential property or by a contingent one.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.3)
     A reaction: This incredibly simple idea strikes me as being powerful and important. ...However, creating illustrative examples leaves me in a state of confusion. You try it. They cite '9' and 'number of planets'. But is it just nominal essence? '9' must be 9.
Objects retain their possible properties across worlds, so a bundle theory of them seems best [Fitting/Mendelsohn]
     Full Idea: The property of 'possibly being a Republican' is as much a property of Bill Clinton as is 'being a democrat'. So we don't peel off his properties from world to world. Hence the bundle theory fits our treatment of objects better than bare particulars.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 7.3)
     A reaction: This bundle theory is better described in recent parlance as the 'modal profile'. I am reluctant to talk of a modal truth about something as one of its 'properties'. An objects, then, is a bundle of truths?
10. Modality / E. Possible worlds / 3. Transworld Objects / c. Counterparts
Counterpart relations are neither symmetric nor transitive, so there is no logic of equality for them [Fitting/Mendelsohn]
     Full Idea: The main technical problem with counterpart theory is that the being-a-counterpart relation is, in general, neither symmetric nor transitive, so no natural logic of equality is forthcoming.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.5)
     A reaction: That is, nothing is equal to a counterpart, either directly or indirectly.
12. Knowledge Sources / D. Empiricism / 2. Associationism
Modern empiricism tends to emphasise psychological connections, not semantic relations [Margolis/Laurence]
     Full Idea: A growing number of philosophers are attracted to modified forms of empiricism, emphasizing psychological relations between the conceptual system and perceptual and motor states, not semantic relations.
     From: E Margolis/S Laurence (Concepts [2009], 3.2)
     A reaction: I suddenly spot that this is what I have been drifting towards for some time! The focus is concept formation, where the philosophers need to join forces with the cognitive scientists.
17. Mind and Body / E. Mind as Physical / 1. Physical Mind
Body-type seems to affect a mind's cognition and conceptual scheme [Margolis/Laurence]
     Full Idea: It is claimed, on the basis of empirical research, that the type of body that an organism has profoundly affects it cognitive operations and the way it conceptualises the world. We can't assume that human minds could inhere in wildly different body types.
     From: E Margolis/S Laurence (Concepts [2009], 3.2)
     A reaction: Sounds interesting. They cite Lawrence Shapiro 2004. It needs a large effort of imagination to think how a snake or whale or albatross might conceptualise the world, in relation to their bodies.
18. Thought / B. Mechanics of Thought / 4. Language of Thought
Language of thought has subject/predicate form and includes logical devices [Margolis/Laurence]
     Full Idea: The language of thought is taken to have subject/predicate form and include logical devices, such as quantifiers and variables.
     From: E Margolis/S Laurence (Concepts [2009], 1.1)
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Concepts are either representations, or abilities, or Fregean senses [Margolis/Laurence]
     Full Idea: The three main options for the ontological status of concepts are to identify them with mental representations, or with abilities, or with Fregean senses.
     From: E Margolis/S Laurence (Concepts [2009], 1)
18. Thought / D. Concepts / 3. Ontology of Concepts / a. Concepts as representations
A computer may have propositional attitudes without representations [Margolis/Laurence]
     Full Idea: It may be possible to have propositional attitudes without having the mental representations tokened in one's head. ...We may say a chess-playing computer thinks it should develop its queen early, though we know it has no representation with that content.
     From: E Margolis/S Laurence (Concepts [2009], 1.1)
     A reaction: [Thye cite Dennett - who talks of the 'intentional stance'] It is, of course, a moot point whether we would attribute a propositional attitude (such as belief) to a machine once we knew that it wasn't representing the relevant concepts.
Do mental representations just lead to a vicious regress of explanations [Margolis/Laurence]
     Full Idea: A standard criticism is that the mental representation view of concepts creates just another item whose significance bears explaining. Either we have a vicious regress, or we might as well explain external language directly.
     From: E Margolis/S Laurence (Concepts [2009], 1.2)
     A reaction: [They cite Dummett, with Wittgenstein in the background] I don't agree, because I think that explanation of concepts only stops when it dovetails into biology.
18. Thought / D. Concepts / 3. Ontology of Concepts / b. Concepts as abilities
Maybe the concept CAT is just the ability to discriminate and infer about cats [Margolis/Laurence]
     Full Idea: The view that concepts are abilities (e.g. found in Brandom, Dummett and Millikan) would say that the concept CAT amounts to the ability to discriminate cats from non-cats and to draw certain inferences about cats.
     From: E Margolis/S Laurence (Concepts [2009], 1.2)
     A reaction: Feels wrong. The concept is what makes these abilities possible, but it seems rather behaviourist to identify the concept with what is enabled by the concept. You might understand 'cat', but fail to recognise your first cat (though you might suspect it).
The abilities view cannot explain the productivity of thought, or mental processes [Margolis/Laurence]
     Full Idea: The abilities view of concepts, by its rejection of mental representation, is ill-equipped to explain the productivity of thought; and it can say little about mental processes.
     From: E Margolis/S Laurence (Concepts [2009], 1.2)
     A reaction: The latter point arises from its behaviouristic character, which just gives us a black box with some output of abilities. In avoiding a possible regress, it offers no explanation at all.
18. Thought / D. Concepts / 4. Structure of Concepts / a. Conceptual structure
Concept-structure explains typicality, categories, development, reference and composition [Margolis/Laurence]
     Full Idea: The structures of concepts are invoked to explain typicality effects, reflective categorization, cognitive development, reference determination, and compositionality.
     From: E Margolis/S Laurence (Concepts [2009], 2.5)
18. Thought / D. Concepts / 4. Structure of Concepts / c. Classical concepts
Classically, concepts give necessary and sufficient conditions for falling under them [Margolis/Laurence]
     Full Idea: The classical theory is that a concept has a definitional structure in that it is composed of simpler concepts that express necessary and sufficient conditions for falling under the concept, the stock example being unmarried and a man for 'bachelor'.
     From: E Margolis/S Laurence (Concepts [2009], 2.1)
     A reaction: This is the background idea to philosophy as analysis, and it makes concepts essentially referential, in that they are defined by their ability to pick things out. There must be some degree of truth in the theory.
Typicality challenges the classical view; we see better fruit-prototypes in apples than in plums [Margolis/Laurence]
     Full Idea: The classical view is challenged by the discovery that certain categories are taken to be more typical, with typicality widely correlating with other data. Apples are judged to be more typical of (and have more common features with) fruit than plums are.
     From: E Margolis/S Laurence (Concepts [2009], 2.1)
     A reaction: This discovery that people use prototypes in thinking has been the biggest idea to ever hit the philosophy of concepts, and simply cannot be ignored (as long as the research keeps reinforcing it, which I believe it does). The classical view might adapt.
The classical theory explains acquisition, categorization and reference [Margolis/Laurence]
     Full Idea: The appeal of the classical theory of concepts is that it offers unified treatments of concept acquisition (assembling constituents), categorization (check constituents against target), and reference determination (whether they apply).
     From: E Margolis/S Laurence (Concepts [2009], 2.1)
     A reaction: [See Idea 11128 for the theory] As so often, I find myself in sympathy with the traditional view which has been relegated to ignominy by our wonderful modern philosophers.
It may be that our concepts (such as 'knowledge') have no definitional structure [Margolis/Laurence]
     Full Idea: In the light of problems such as the definition of knowledge, many philosophers now take seriously the possibility that our concepts lack definitional structure.
     From: E Margolis/S Laurence (Concepts [2009], 2.1)
     A reaction: This challenges the classical view, that there are precise conditions for each concept. That view would obviously be in difficulties with atomic concepts, so our account of those might be applied all the way up.
18. Thought / D. Concepts / 4. Structure of Concepts / d. Concepts as prototypes
The prototype theory is probabilistic, picking something out if it has sufficient of the properties [Margolis/Laurence]
     Full Idea: In the prototype theory of concepts, a lexical concept has probabilistic structure in that something falls under it if it satisfies a sufficient number of properties encoded by the constituents. It originates in Wittgenstein's 'family resemblance'.
     From: E Margolis/S Laurence (Concepts [2009], 2.2)
     A reaction: It would seem unlikely to be a matter of the 'number' of properties, and would have to involve some notion of what was essential to the prototype.
Prototype theory categorises by computing the number of shared constituents [Margolis/Laurence]
     Full Idea: On the prototype theory, categorization is to be understood as a similarity comparison process, where similarity is computed as a function of the number of constituents that two concepts hold in common.
     From: E Margolis/S Laurence (Concepts [2009], 2.2)
     A reaction: Again it strikes me that 'computing' similarity by mere 'number' of shared constituents won't do, as there is a prior judgement about which constituents really matter, or are essential. That may even be hard-wired.
People don't just categorise by apparent similarities [Margolis/Laurence]
     Full Idea: When it comes to more reflexive judgements, people go beyond the outcome of a similarity comparison. Even children say that a dog surgically altered to look like a raccoon is still a dog.
     From: E Margolis/S Laurence (Concepts [2009], 2.2)
     A reaction: We can defend the theory by not underestimating people so much. Most categorisation is done on superficial grounds, but even children know there may be hidden similarities (behind the mask, under the bonnet) which are more important.
Complex concepts have emergent properties not in the ingredient prototypes [Margolis/Laurence]
     Full Idea: An objection to the prototype view concerns compositionality. A complex concept often has emergent properties, as when it seems that 'pet fish' encodes for brightly coloured, which has no basis in the prototypes for 'pet' or 'fish'.
     From: E Margolis/S Laurence (Concepts [2009], 2.2)
     A reaction: I would take 'pet fish' to work like a database query. 'Fish' has a very vague prototype, and then 'pet fish' narrows the search to fish which are appropriate to be pets. We might say that the prototype is refined, or the Mk 2 prototype appears.
Many complex concepts obviously have no prototype [Margolis/Laurence]
     Full Idea: Many patently complex concepts don't even have a prototype structure, such as 'Chairs that were purchased on a Wednesday'.
     From: E Margolis/S Laurence (Concepts [2009], 2.2)
     A reaction: [The example seems to be from Fodor] I disagree. If we accept the notion of 'refining' the prototype (see Idea 11135), then the compositionality of the expression will produce a genuine but very unusual prototype.
18. Thought / D. Concepts / 4. Structure of Concepts / f. Theory theory of concepts
The theory theory is holistic, so how can people have identical concepts? [Margolis/Laurence]
     Full Idea: A problem with the theory theory of concepts is that it is holistic, saying a concept is determined by its role, not by its constituents. It then seems difficult for different people to possess the same concepts (or even the same person, over time).
     From: E Margolis/S Laurence (Concepts [2009], 2.3)
     A reaction: This seems a good objection to any holistic account of concepts or meaning - spotted by Plato in motivating his theory of Forms, to give the necessary stability to communication.
The theory theory of concepts says they are parts of theories, defined by their roles [Margolis/Laurence]
     Full Idea: The theory theory of concepts says that terms are related as in a scientific theory, and that categorization resembles theorising. It is generally assumed that scientific terms are interdefined so that content is determined by its role in the theory.
     From: E Margolis/S Laurence (Concepts [2009], 2.3)
     A reaction: I never like this sort of account. What are the characteristics of the thing which enable it to fulfil its role? You haven't defined a car when you've said it gets you from A to B.
18. Thought / D. Concepts / 4. Structure of Concepts / g. Conceptual atomism
Maybe concepts have no structure, and determined by relations to the world, not to other concepts [Margolis/Laurence]
     Full Idea: According to conceptual atomism, lexical concepts have no semantic structure, and the content of a concept isn't determined by its relation to other concepts but by its relations to the world.
     From: E Margolis/S Laurence (Concepts [2009], 2.4)
     A reaction: [They cite Fodor 1998 and Millikan 2000] I like the sound of that, because I take the creation of concepts to be (in the first instance) a response to the world, not a response to other concepts.
18. Thought / D. Concepts / 5. Concepts and Language / c. Concepts without language
People can formulate new concepts which are only named later [Margolis/Laurence]
     Full Idea: People seem to be able to formulate novel concepts which are left to be named later; the concept comes first, the name second.
     From: E Margolis/S Laurence (Concepts [2009], 4.2)
     A reaction: [This seems to have empirical support, and he cites Pinker 1994] I do not find this remotely surprising, since I presume that human concepts are a continuous kind with animal concepts, including non-conscious concepts (why not?).