Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'Presupposition' and 'The Theory of Logical Types'

unexpand these ideas     |    start again     |     specify just one area for these texts


13 ideas

4. Formal Logic / A. Syllogistic Logic / 3. Term Logic
Logic would be more natural if negation only referred to predicates [Dummett]
     Full Idea: A better proposal for a formal logic closer to natural language would be one that had a negation-operator only for (simple) predicates.
     From: Michael Dummett (Presupposition [1960], p.27)
     A reaction: Dummett observes that classical formal logic was never intended to be close to natural language. Term logic does have that aim, but the meta-question is whether that end is desirable, and why.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / c. not
Natural language 'not' doesn't apply to sentences [Dummett]
     Full Idea: Natural language does not possess a sentential negation-operator.
     From: Michael Dummett (Presupposition [1960], p.27)
     A reaction: This is a criticism of Strawson, who criticises logic for not following natural language, but does it himself with negation. In the question of how language and logic connect, this idea seems important. Term Logic aims to get closer to natural language.
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
'Propositional functions' are ambiguous until the variable is given a value [Russell]
     Full Idea: By a 'propositional function' I mean something which contains a variable x, and expresses a proposition as soon as a value is assigned to x. That is to say, it differs from a proposition solely by the fact that it is ambiguous.
     From: Bertrand Russell (The Theory of Logical Types [1910], p.216)
     A reaction: This is Frege's notion of a 'concept', as an assertion of a predicate which still lacks a subject.
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
'All judgements made by Epimenedes are true' needs the judgements to be of the same type [Russell]
     Full Idea: Such a proposition as 'all the judgements made by Epimenedes are true' will only be prima facie capable of truth if all his judgements are of the same order.
     From: Bertrand Russell (The Theory of Logical Types [1910], p.227)
     A reaction: This is an attempt to use his theory of types to solve the Liar. Tarski's invocation of a meta-language is clearly in the same territory.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Type theory cannot identify features across levels (because such predicates break the rules) [Morris,M on Russell]
     Full Idea: Russell's theory of types meant that features common to different levels of the hierarchy became uncapturable (since any attempt to capture them would involve a predicate which disobeyed the hierarchy restrictions).
     From: comment on Bertrand Russell (The Theory of Logical Types [1910]) by Michael Morris - Guidebook to Wittgenstein's Tractatus 2H
     A reaction: I'm not clear whether this is the main reason why type theory was abandoned. Ramsey was an important critic.
Classes are defined by propositional functions, and functions are typed, with an axiom of reducibility [Russell, by Lackey]
     Full Idea: In Russell's mature 1910 theory of types classes are defined in terms of propositional functions, and functions themselves are regimented by a ramified theory of types mitigated by the axiom of reducibility.
     From: report of Bertrand Russell (The Theory of Logical Types [1910]) by Douglas Lackey - Intros to Russell's 'Essays in Analysis' p.133
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
A one-variable function is only 'predicative' if it is one order above its arguments [Russell]
     Full Idea: We will define a function of one variable as 'predicative' when it is of the next order above that of its arguments, i.e. of the lowest order compatible with its having an argument.
     From: Bertrand Russell (The Theory of Logical Types [1910], p.237)
     A reaction: 'Predicative' just means it produces a set. This is Russell's strict restriction on which functions are predicative.