Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'Humean metaphysics vs metaphysics of Powers' and 'Introduction to 'Absolute Generality''

unexpand these ideas     |    start again     |     specify just one area for these texts


13 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
The two best understood conceptions of set are the Iterative and the Limitation of Size [Rayo/Uzquiano]
     Full Idea: The two best understood conceptions of set are the Iterative Conception and the Limitation of Size Conception.
     From: Rayo,A/Uzquiasno,G (Introduction to 'Absolute Generality' [2006], 1.2.2)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / m. Axiom of Separation
Some set theories give up Separation in exchange for a universal set [Rayo/Uzquiano]
     Full Idea: There are set theories that countenance exceptions to the Principle of Separation in exchange for a universal set.
     From: Rayo,A/Uzquiasno,G (Introduction to 'Absolute Generality' [2006], 1.2.2)
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
We could have unrestricted quantification without having an all-inclusive domain [Rayo/Uzquiano]
     Full Idea: The possibility of unrestricted quantification does not immediately presuppose the existence of an all-inclusive domain. One could deny an all-inclusive domain but grant that some quantifications are sometimes unrestricted.
     From: Rayo,A/Uzquiasno,G (Introduction to 'Absolute Generality' [2006], 1.1)
     A reaction: Thus you can quantify over anything you like, but only from what is available. Eat what you like (in this restaurant).
Absolute generality is impossible, if there are indefinitely extensible concepts like sets and ordinals [Rayo/Uzquiano]
     Full Idea: There are doubts about whether absolute generality is possible, if there are certain concepts which are indefinitely extensible, lacking definite extensions, and yielding an ever more inclusive hierarchy. Sets and ordinals are paradigm cases.
     From: Rayo,A/Uzquiasno,G (Introduction to 'Absolute Generality' [2006], 1.2.1)
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Perhaps second-order quantifications cover concepts of objects, rather than plain objects [Rayo/Uzquiano]
     Full Idea: If one thought of second-order quantification as quantification over first-level Fregean concepts [note: one under which only objects fall], talk of domains might be regimented as talk of first-level concepts, which are not objects.
     From: Rayo,A/Uzquiasno,G (Introduction to 'Absolute Generality' [2006], 1.2.2)
     A reaction: That is (I take it), don't quantify over objects, but quantify over concepts, but only those under which known objects fall. One might thus achieve naďve comprehension without paradoxes. Sound like fun.
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
19. Language / F. Communication / 5. Pragmatics / a. Contextual meaning
The domain of an assertion is restricted by context, either semantically or pragmatically [Rayo/Uzquiano]
     Full Idea: We generally take an assertion's domain of discourse to be implicitly restricted by context. [Note: the standard approach is that this restriction is a semantic phenomenon, but Kent Bach (2000) argues that it is a pragmatic phenomenon]
     From: Rayo,A/Uzquiasno,G (Introduction to 'Absolute Generality' [2006], 1.1)
     A reaction: I think Kent Bach is very very right about this. Follow any conversation, and ask what the domain is at any moment. The reference of a word like 'they' can drift across things, with no semantics to guide us, but only clues from context and common sense.
27. Natural Reality / D. Time / 2. Passage of Time / g. Time's arrow
Causation is the power of one property to produce another, and this gives time its direction [Esfeld]
     Full Idea: The metaphysics of causation in terms of powers is linked with an intrinsic direction of time. There is a causal connection if an F-property produces a G. One can argue that causation thus is the basis for the direction of time.
     From: Michael Esfeld (Humean metaphysics vs metaphysics of Powers [2010], 7.2)
     A reaction: I think this is my preferred metaphysic - that both time and causation are primitive, but the direction of time is the result of the causal process. Viewing some new world, we would just say that time went in whichever direction the causation went.