Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'When Does a Life Begin?' and 'Introduction to Zermelo's 1930 paper'

unexpand these ideas     |    start again     |     specify just one area for these texts


13 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
The first-order ZF axiomatisation is highly non-categorical [Hallett,M]
     Full Idea: The first-order Sermelo-Fraenkel axiomatisation is highly non-categorical.
     From: Michael Hallett (Introduction to Zermelo's 1930 paper [1996], p.1213)
Non-categoricity reveals a sort of incompleteness, with sets existing that the axioms don't reveal [Hallett,M]
     Full Idea: The non-categoricity of the axioms which Zermelo demonstrates reveals an incompleteness of a sort, ....for this seems to show that there will always be a set (indeed, an unending sequence) that the basic axioms are incapable of revealing to be sets.
     From: Michael Hallett (Introduction to Zermelo's 1930 paper [1996], p.1215)
     A reaction: Hallett says the incompleteness concerning Zermelo was the (transfinitely) indefinite iterability of the power set operation (which is what drives the 'iterative conception' of sets).
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
Zermelo allows ur-elements, to enable the widespread application of set-theory [Hallett,M]
     Full Idea: Unlike earlier writers (such as Fraenkel), Zermelo clearly allows that there might be ur-elements (that is, objects other than the empty set, which have no members). Indeed he sees in this the possibility of widespread application of set-theory.
     From: Michael Hallett (Introduction to Zermelo's 1930 paper [1996], p.1217)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The General Continuum Hypothesis and its negation are both consistent with ZF [Hallett,M]
     Full Idea: In 1938, Gödel showed that ZF plus the General Continuum Hypothesis is consistent if ZF is. Cohen showed that ZF and not-GCH is also consistent if ZF is, which finally shows that neither GCH nor ¬GCH can be proved from ZF itself.
     From: Michael Hallett (Introduction to Zermelo's 1930 paper [1996], p.1217)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
25. Social Practice / F. Life Issues / 3. Abortion
It isn't obviously wicked to destroy a potential human being (e.g. an ununited egg and sperm) [Lockwood]
     Full Idea: A week-old embryo without a brain may be a potential human being, but so are a sperm and an ovum that are about to meet in a dish, and it wouldn't be wicked to keep those apart.
     From: Michael Lockwood (When Does a Life Begin? [1985], p.19)
     A reaction: Sounds fine, but it may be a slippery slope. Is it acceptable to deny a place at music school to a potentially great musician?
I may exist before I become a person, just as I exist before I become an adult [Lockwood]
     Full Idea: It makes perfectly good sense to say that I existed before I became a person, just as I existed before I became an adult, or a philosopher.
     From: Michael Lockwood (When Does a Life Begin? [1985], p.13)
     A reaction: The word 'I' needs thought here. I was once a non-adult, but was I ever a non-person? 'Person' is not a clear concept, despite what many philosophers since Locke may think.
If the soul is held to leave the body at brain-death, it should arrive at the time of brain-creation [Lockwood]
     Full Idea: Any Christian who feels that body and soul go their separate ways at brain death ought in consistency to hold that they come together only at the point when whatever is destroyed at brain death first came into being.
     From: Michael Lockwood (When Does a Life Begin? [1985], p.24)
     A reaction: Hence Christians probably focus less on brain-death than do doctors and the rest of us.