Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'Commentary on Euclid's 'Elements'' and 'The Nature of Universals and Propositions'

unexpand these ideas     |    start again     |     specify just one area for these texts


9 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
8. Modes of Existence / B. Properties / 13. Tropes / a. Nature of tropes
Stout first explicitly proposed that properties and relations are particulars [Stout,GF, by Campbell,K]
     Full Idea: In modern times, it was G.F. Stout who first explicitly made the proposal that properties and relations are as particular as the substances that they qualify.
     From: report of G.F. Stout (The Nature of Universals and Propositions [1923]) by Keith Campbell - The Metaphysic of Abstract Particulars §1
     A reaction: Note that relations will have to be tropes, as well as properties. Williams wants tropes to be parts of objects, but that will be tricky with relations. If you place two objects on a table, how does the 'to the left of' trope come into existence?
14. Science / D. Explanation / 2. Types of Explanation / g. Causal explanations
Geometrical proofs do not show causes, as when we prove a triangle contains two right angles [Proclus]
     Full Idea: Geometry does not ask 'why?' ..When from the exterior angle equalling two opposite interior angles it is shown that the interior angles make two right angles, this is not a causal demonstration. With no exterior angle they still equal two right angles.
     From: Proclus (Commentary on Euclid's 'Elements' [c.452], p.161-2), quoted by Paolo Mancosu - Explanation in Mathematics §5
     A reaction: A very nice example. It is hard to imagine how one might demonstrate the cause of the angles making two right angles. If you walk, turn left x°, then turn left y°, then turn left z°, and x+y+z=180°, you end up going in the original direction.
18. Thought / E. Abstraction / 1. Abstract Thought
The origin of geometry started in sensation, then moved to calculation, and then to reason [Proclus]
     Full Idea: It is unsurprising that geometry was discovered in the necessity of Nile land measurement, since everything in the world of generation goes from imperfection to perfection. They would naturally pass from sense-perception to calculation, and so to reason.
     From: Proclus (Commentary on Euclid's 'Elements' [c.452]), quoted by Charles Chihara - A Structural Account of Mathematics 9.12 n55
     A reaction: The last sentence is the core of my view on abstraction, that it proceeds by moving through levels of abstraction, approaching more and more general truths.