Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'The Evolution of Co-Operation' and 'Marx'

unexpand these ideas     |    start again     |     specify just one area for these texts


10 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
23. Ethics / B. Contract Ethics / 8. Contract Strategies
When players don't meet again, defection is the best strategy [Axelrod]
     Full Idea: When players will never meet again, the strategy of defection is the only stable strategy.
     From: Robert Axelrod (The Evolution of Co-Operation [1984], 5)
     A reaction: This gives good grounds for any community's mistrust of transient strangers, such as tourists. And yet any sensible tourist will want communities to trust tourists, and will therefore behave in a reliable way.
Good strategies avoid conflict, respond to hostility, forgive, and are clear [Axelrod]
     Full Idea: Successful game strategies avoid unnecessary conflict, are provoked by an uncalled for defection, forgive after a provocation, and behave clearly so the other player can adapt.
     From: Robert Axelrod (The Evolution of Co-Operation [1984], 1)
     A reaction: [compressed] Exactly what you would expect from a nice but successful school teacher. The strategies for success in these games is the same as the rules for educating a person into cooperative behaviour. TIT FOR TAT does all these.
24. Political Theory / C. Ruling a State / 4. Changing the State / c. Revolution
In Marxism the state will be superseded [Singer]
     Full Idea: It is a famous Marxist doctrine that the state will be superseded.
     From: Peter Singer (Marx [1980], 9)
     A reaction: Why is that final state communism rather than anarchism?
24. Political Theory / D. Ideologies / 9. Communism
Materialist history says we are subject to incomprehensible forces [Singer]
     Full Idea: The materialist conception of history tells us that human beings are totally subject to forces they do not understand and control.
     From: Peter Singer (Marx [1980], 6)
     A reaction: How does Marx know the forces? An exceptionally influential idea, because it is a modern commonplace that we have very little control over our own lives (apart from right wingers asserting that 'you can have anything if you really really want it').