Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'Quaestiones de Potentia Dei' and 'Rationality'

unexpand these ideas     |    start again     |     specify just one area for these texts


9 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
9. Objects / B. Unity of Objects / 1. Unifying an Object / b. Unifying aggregates
'One' can mean undivided and not a multitude, or it can add measurement, giving number [Aquinas]
     Full Idea: There are two sorts of one. There is the one which is convertible with being, which adds nothing to being except being undivided; and this deprives of multitude. Then there is the principle of number, which to the notion of being adds measurement.
     From: Thomas Aquinas (Quaestiones de Potentia Dei [1269], q3 a16 ad 3-um)
     A reaction: [From a lecture handout] I'm not sure I understand this. We might say, I suppose, that insofar as water is water, it is all one, but you can't count it. Perhaps being 'unified' and being a 'unity' are different?
12. Knowledge Sources / E. Direct Knowledge / 4. Memory
The ancient Memorists said virtually all types of thinking could be done simply by memory [Sorabji]
     Full Idea: The ancient medical Memorists said that ordinary thinking, inferring, reflecting, believing, assuming, examining, generalising and knowing can all be done simply on the basis of memory.
     From: Richard Sorabji (Rationality [1996], 'Inference')
     A reaction: The think there is a plausible theory that all neurons do is remember, and are mainly distinguished by the duration of their memories. We might explain these modes of thinking in terms of various combinations of the fast and the slow.
Stoics say true memory needs reflection and assent, but animals only have perceptual recognition [Sorabji]
     Full Idea: Stoics say memory proper involves reflection and assent. Animal memory, by contrast, is not memory proper, but mere perceptual recognition. The horse remembers the road when he is on it, but not when he is in the stable.
     From: Richard Sorabji (Rationality [1996], 'Other')
     A reaction: An interesting distinction. Do I remember something if I can never recall it, and yet recognise it when it reappears, such as a person I knew long ago? 'Memory' is ambiguous, between lodged in the mind, and recallable. Unfair to horses, this.