Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'Panpsychism' and 'Counting and the Natural Numbers'

unexpand these ideas     |    start again     |     specify just one area for these texts


11 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
The essence of natural numbers must reflect all the functions they perform [Sicha]
     Full Idea: What is really essential to being a natural number is what is common to the natural numbers in all the functions they perform.
     From: Jeffrey H. Sicha (Counting and the Natural Numbers [1968], 2)
     A reaction: I could try using natural numbers as insults. 'You despicable seven!' 'How dare you!' I actually agree. The question about functions is always 'what is it about this thing that enables it to perform this function'.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
To know how many, you need a numerical quantifier, as well as equinumerosity [Sicha]
     Full Idea: A knowledge of 'how many' cannot be inferred from the equinumerosity of two collections; a numerical quantifier statement is needed.
     From: Jeffrey H. Sicha (Counting and the Natural Numbers [1968], 3)
Counting puts an initial segment of a serial ordering 1-1 with some other entities [Sicha]
     Full Idea: Counting is the activity of putting an initial segment of a serially ordered string in 1-1 correspondence with some other collection of entities.
     From: Jeffrey H. Sicha (Counting and the Natural Numbers [1968], 2)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
8. Modes of Existence / B. Properties / 7. Emergent Properties
Emergent properties appear at high levels of complexity, but aren't explainable by the lower levels [Nagel]
     Full Idea: The supposition that a diamond or organism should truly have emergent properties is that they appear at certain complex levels of organisation, but are not explainable (even in principle) in terms of any more fundamental properties of the system.
     From: Thomas Nagel (Panpsychism [1979], p.186)
26. Natural Theory / C. Causation / 9. General Causation / d. Causal necessity
Given the nature of heat and of water, it is literally impossible for water not to boil at the right heat [Nagel]
     Full Idea: Given what heat is and what water is, it is literally impossible for water to be heated beyond a certain point at normal atmospheric pressure without boiling.
     From: Thomas Nagel (Panpsychism [1979], p.186)