Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'Panpsychism' and 'Intuitionism and Formalism'

unexpand these ideas     |    start again     |     specify just one area for these texts


13 ideas

4. Formal Logic / E. Nonclassical Logics / 7. Paraconsistency
Our dislike of contradiction in logic is a matter of psychology, not mathematics [Brouwer]
     Full Idea: Not to the mathematician, but to the psychologist, belongs the task of explaining why ...we are averse to so-called contradictory systems in which the negative as well as the positive of certain propositions are valid.
     From: Luitzen E.J. Brouwer (Intuitionism and Formalism [1912], p.79)
     A reaction: Was the turning point of Graham Priest's life the day he read this sentence? I don't agree. I take the principle of non-contradiction to be a highly generalised observation of how the world works (and Russell agrees with me).
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Scientific laws largely rest on the results of counting and measuring [Brouwer]
     Full Idea: A large part of the natural laws introduced by science treat only of the mutual relations between the results of counting and measuring.
     From: Luitzen E.J. Brouwer (Intuitionism and Formalism [1912], p.77)
     A reaction: His point, I take it, is that the higher reaches of numbers have lost touch with the original point of the system. I now see the whole issue as just depending on conventions about the agreed extension of the word 'number'.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionists only accept denumerable sets [Brouwer]
     Full Idea: The intuitionist recognises only the existence of denumerable sets.
     From: Luitzen E.J. Brouwer (Intuitionism and Formalism [1912], p.80)
     A reaction: That takes you up to omega, but not beyond, presumably because it then loses sight of the original intuition of 'bare two-oneness' (Idea 12453). I sympathise, but the word 'number' has shifted its meaning a lot these days.
Neo-intuitionism abstracts from the reuniting of moments, to intuit bare two-oneness [Brouwer]
     Full Idea: Neo-intuitionism sees the falling apart of moments, reunited while remaining separated in time, as the fundamental phenomenon of human intellect, passing by abstracting to mathematical thinking, the intuition of bare two-oneness.
     From: Luitzen E.J. Brouwer (Intuitionism and Formalism [1912], p.80)
     A reaction: [compressed] A famous and somewhat obscure idea. He goes on to say that this creates one and two, and all the finite ordinals.
8. Modes of Existence / B. Properties / 7. Emergent Properties
Emergent properties appear at high levels of complexity, but aren't explainable by the lower levels [Nagel]
     Full Idea: The supposition that a diamond or organism should truly have emergent properties is that they appear at certain complex levels of organisation, but are not explainable (even in principle) in terms of any more fundamental properties of the system.
     From: Thomas Nagel (Panpsychism [1979], p.186)
19. Language / A. Nature of Meaning / 5. Meaning as Verification
Intuitonists in mathematics worried about unjustified assertion, as well as contradiction [Brouwer, by George/Velleman]
     Full Idea: The concern of mathematical intuitionists was that the use of certain forms of inference generates, not contradiction, but unjustified assertions.
     From: report of Luitzen E.J. Brouwer (Intuitionism and Formalism [1912]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: This seems to be the real origin of the verificationist idea in the theory of meaning. It is a hugely revolutionary idea - that ideas are not only ruled out of court by contradiction, but that there are other criteria which should also be met.
26. Natural Theory / C. Causation / 9. General Causation / d. Causal necessity
Given the nature of heat and of water, it is literally impossible for water not to boil at the right heat [Nagel]
     Full Idea: Given what heat is and what water is, it is literally impossible for water to be heated beyond a certain point at normal atmospheric pressure without boiling.
     From: Thomas Nagel (Panpsychism [1979], p.186)