Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'Apology of Socrates' and 'Relations'

unexpand these ideas     |    start again     |     specify just one area for these texts


10 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
8. Modes of Existence / A. Relations / 1. Nature of Relations
It may be that internal relations like proportion exist, because we directly perceive it [MacBride]
     Full Idea: Some philosophers maintain that we literally perceive proportions and other internal relations. These relations must exist, otherwise we couldn't perceive them.
     From: Fraser MacBride (Relations [2016], 3)
     A reaction: [He cites Mulligan 1991, and Hochberg 2013:232] This seems a rather good point. You can't perceive the differing heights of two people, yet fail to perceive that one is taller. You also perceive 'below', which is external.
8. Modes of Existence / A. Relations / 2. Internal Relations
Internal relations are fixed by existences, or characters, or supervenience on characters [MacBride]
     Full Idea: Internal relations are determined either by the mere existence of the things they relate, or by their intrinsic characters, or they supervene on the intrinsic characters of the things they relate.
     From: Fraser MacBride (Relations [2016], 3)
     A reaction: Suggesting that they 'supervene' doesn't explain anything (and supervenience never explains anything). I vote for the middle one - the intrinsic character. It has to be something about the existence, and not the mere fact of existence.
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
'Multigrade' relations are those lacking a fixed number of relata [MacBride]
     Full Idea: A 'unigrade' relation R has a definite degree or adicity: R is binary, or ternary....or n-ary (for some unique n). By contrast a relation is 'multigrade' if it fails to be unigrade. Causation appears to be multigrade.
     From: Fraser MacBride (Relations [2016], 1)
     A reaction: He also cites entailment, which may have any number of premises.
25. Social Practice / E. Policies / 5. Education / b. Education principles
Education is the greatest of human goods [Xenophon]
     Full Idea: Education is the greatest of human goods.
     From: Xenophon (Apology of Socrates [c.392 BCE], 22)
     A reaction: Of course, one might ask what education is for, and arrive at a greater good. If you ask what is the greatest good which a society can provide for you, or which you can give to your children, this seems to me a good answer.