Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'Apology of Socrates' and 'works'

unexpand these ideas     |    start again     |     specify just one area for these texts


9 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
Weierstrass eliminated talk of infinitesimals [Weierstrass, by Kitcher]
     Full Idea: Weierstrass effectively eliminated the infinitesimalist language of his predecessors.
     From: report of Karl Weierstrass (works [1855]) by Philip Kitcher - The Nature of Mathematical Knowledge 10.6
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
Weierstrass made limits central, but the existence of limits still needed to be proved [Weierstrass, by Bostock]
     Full Idea: After Weierstrass had stressed the importance of limits, one now needed to be able to prove the existence of such limits.
     From: report of Karl Weierstrass (works [1855]) by David Bostock - Philosophy of Mathematics 4.4
     A reaction: The solution to this is found in work on series (going back to Cauchy), and on Dedekind's cuts.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
25. Social Practice / E. Policies / 5. Education / b. Education principles
Education is the greatest of human goods [Xenophon]
     Full Idea: Education is the greatest of human goods.
     From: Xenophon (Apology of Socrates [c.392 BCE], 22)
     A reaction: Of course, one might ask what education is for, and arrive at a greater good. If you ask what is the greatest good which a society can provide for you, or which you can give to your children, this seems to me a good answer.