Combining Texts

All the ideas for 'Particulars in Particular Clothing', 'Logological Fragments II' and 'Elements of Geometry'

unexpand these ideas     |    start again     |     specify just one area for these texts


18 ideas

1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / c. Philosophy as generalisation
The highest aim of philosophy is to combine all philosophies into a unity [Novalis]
     Full Idea: He attains the maximum of a philosopher who combines all philosophies into a single philosophy
     From: Novalis (Logological Fragments II [1798], 31)
     A reaction: I have found the epigraph for my big book! Recently a few narrowly analytical philosophers have attempted big books about everything (Sider, Heil, Chalmers), and they get a huge round of applause from me.
Philosophy relies on our whole system of learning, and can thus never be complete [Novalis]
     Full Idea: Now all learning is connected - thus philosophy will never be complete. Only in the complete system of all learning will philosophy be truly visible.
     From: Novalis (Logological Fragments II [1798], 39)
     A reaction: Philosophy is evidently the unifying subject, which reveals the point of all the other subjects. It matches my maxim that 'science is the servant of philosophy'.
1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / d. Philosophy as puzzles
Philosophers feed on problems, hoping they are digestible, and spiced with paradox [Novalis]
     Full Idea: The philosopher lives on problems as the human being does on food. An insoluble problem is an indigestible food. What spice is to food, the paradoxical is to problems.
     From: Novalis (Logological Fragments II [1798], 09)
     A reaction: Novalis would presumably have disliked Hegel's dialectic, where the best food seems to be the indigestible.
1. Philosophy / E. Nature of Metaphysics / 3. Metaphysical Systems
Philosophy aims to produce a priori an absolute and artistic world system [Novalis]
     Full Idea: Philosophy ...is the art of producing all our conceptions according to an absolute, artistic idea and of developing the thought of a world system a priori out of the depths of our spirit.
     From: Novalis (Logological Fragments II [1798], 19)
     A reaction: A lovely statement of the dream of building world systems by pure thought - embodying perfectly the view of philosophy despised by logical positivists and modern logical metaphysicians. The Novalis view will never die! I like 'artistic'.
2. Reason / E. Argument / 6. Conclusive Proof
Proof reveals the interdependence of truths, as well as showing their certainty [Euclid, by Frege]
     Full Idea: Euclid gives proofs of many things which anyone would concede to him without question. ...The aim of proof is not merely to place the truth of a proposition beyond doubt, but also to afford us insight into the dependence of truths upon one another.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by Gottlob Frege - Grundlagen der Arithmetik (Foundations) §02
     A reaction: This connects nicely with Shoemaker's view of analysis (Idea 8559), which I will adopt as my general view. I've always thought of philosophy as the aspiration to wisdom through the cartography of concepts.
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / c. Derivations rules of PC
If you pick an arbitrary triangle, things proved of it are true of all triangles [Euclid, by Lemmon]
     Full Idea: Euclid begins proofs about all triangles with 'let ABC be a triangle', but ABC is not a proper name. It names an arbitrarily selected triangle, and if that has a property, then we can conclude that all triangles have the property.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by E.J. Lemmon - Beginning Logic 3.2
     A reaction: Lemmon adds the proviso that there must be no hidden assumptions about the triangle we have selected. You must generalise the properties too. Pick a triangle, any triangle, say one with three angles of 60 degrees; now generalise from it.
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Logic (the theory of relations) should be applied to mathematics [Novalis]
     Full Idea: Ought not logic, the theory of relations, be applied to mathematics?
     From: Novalis (Logological Fragments II [1798], 38)
     A reaction: Bolzano was 19 when his was written. I presume Novalis would have been excited by set theory (even though he was a hyper-romantic).
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Euclid's geometry is synthetic, but Descartes produced an analytic version of it [Euclid, by Resnik]
     Full Idea: Euclid's geometry is a synthetic geometry; Descartes supplied an analytic version of Euclid's geometry, and we now have analytic versions of the early non-Euclidean geometries.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by Michael D. Resnik - Maths as a Science of Patterns One.4
     A reaction: I take it that the original Euclidean axioms were observations about the nature of space, but Descartes turned them into a set of pure interlocking definitions which could still function if space ceased to exist.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
An assumption that there is a largest prime leads to a contradiction [Euclid, by Brown,JR]
     Full Idea: Assume a largest prime, then multiply the primes together and add one. The new number isn't prime, because we assumed a largest prime; but it can't be divided by a prime, because the remainder is one. So only a larger prime could divide it. Contradiction.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by James Robert Brown - Philosophy of Mathematics Ch.1
     A reaction: Not only a very elegant mathematical argument, but a model for how much modern logic proceeds, by assuming that the proposition is false, and then deducing a contradiction from it.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / m. One
A unit is that according to which each existing thing is said to be one [Euclid]
     Full Idea: A unit is that according to which each existing thing is said to be one.
     From: Euclid (Elements of Geometry [c.290 BCE], 7 Def 1)
     A reaction: See Frege's 'Grundlagen' §29-44 for a sustained critique of this. Frege is good, but there must be something right about the Euclid idea. If I count stone, paper and scissors as three, each must first qualify to be counted as one. Psychology creeps in.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Postulate 2 says a line can be extended continuously [Euclid, by Shapiro]
     Full Idea: Euclid's Postulate 2 says the geometer can 'produce a finite straight line continuously in a straight line'.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by Stewart Shapiro - Thinking About Mathematics 4.2
     A reaction: The point being that this takes infinity for granted, especially if you start counting how many points there are on the line. The Einstein idea that it might eventually come round and hit you on the back of the head would have charmed Euclid.
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Euclid relied on obvious properties in diagrams, as well as on his axioms [Potter on Euclid]
     Full Idea: Euclid's axioms were insufficient to derive all the theorems of geometry: at various points in his proofs he appealed to properties that are obvious from the diagrams but do not follow from the stated axioms.
     From: comment on Euclid (Elements of Geometry [c.290 BCE]) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 03 'aim'
     A reaction: I suppose if the axioms of a system are based on self-evidence, this would licence an appeal to self-evidence elsewhere in the system. Only pedants insist on writing down what is obvious to everyone!
Euclid's parallel postulate defines unique non-intersecting parallel lines [Euclid, by Friend]
     Full Idea: Euclid's fifth 'parallel' postulate says if there is an infinite straight line and a point, then there is only one straight line through the point which won't intersect the first line. This axiom is independent of Euclid's first four (agreed) axioms.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by Michèle Friend - Introducing the Philosophy of Mathematics 2.2
     A reaction: This postulate was challenged in the nineteenth century, which was a major landmark in the development of modern relativist views of knowledge.
Euclid needs a principle of continuity, saying some lines must intersect [Shapiro on Euclid]
     Full Idea: Euclid gives no principle of continuity, which would sanction an inference that if a line goes from the outside of a circle to the inside of circle, then it must intersect the circle at some point.
     From: comment on Euclid (Elements of Geometry [c.290 BCE]) by Stewart Shapiro - Philosophy of Mathematics 6.1 n2
     A reaction: Cantor and Dedekind began to contemplate discontinuous lines.
Euclid says we can 'join' two points, but Hilbert says the straight line 'exists' [Euclid, by Bernays]
     Full Idea: Euclid postulates: One can join two points by a straight line; Hilbert states the axiom: Given any two points, there exists a straight line on which both are situated.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by Paul Bernays - On Platonism in Mathematics p.259
Modern geometries only accept various parts of the Euclid propositions [Russell on Euclid]
     Full Idea: In descriptive geometry the first 26 propositions of Euclid hold. In projective geometry the 1st, 7th, 16th and 17th require modification (as a straight line is not a closed series). Those after 26 depend on the postulate of parallels, so aren't assumed.
     From: comment on Euclid (Elements of Geometry [c.290 BCE]) by Bertrand Russell - The Principles of Mathematics §388
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / b. Greek arithmetic
Euclid's common notions or axioms are what we must have if we are to learn anything at all [Euclid, by Roochnik]
     Full Idea: The best known example of Euclid's 'common notions' is "If equals are subtracted from equals the remainders are equal". These can be called axioms, and are what "the man who is to learn anything whatever must have".
     From: report of Euclid (Elements of Geometry [c.290 BCE], 72a17) by David Roochnik - The Tragedy of Reason p.149
8. Modes of Existence / B. Properties / 13. Tropes / a. Nature of tropes
Internal relations combine some tropes into a nucleus, which bears the non-essential tropes [Simons, by Edwards]
     Full Idea: Simons's 'nuclear' option blends features of the substratum and bundle theories. First we have tropes collected by virtue of their internal relations, forming the essential kernel or nucleus. This nucleus then bears the non-essential tropes.
     From: report of Peter Simons (Particulars in Particular Clothing [1994], p.567) by Douglas Edwards - Properties 3.5
     A reaction: [compression of Edwards's summary] This strikes me as being a remarkably good theory. I am not sure of the ontological status of properties, such that they can (unaided) combine to make part of an object. What binds the non-essentials?