Combining Texts

All the ideas for 'Material Beings', 'The Evolution of Logic' and 'First-Order Modal Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


132 ideas

1. Philosophy / C. History of Philosophy / 4. Later European Philosophy / c. Eighteenth century philosophy
We are all post-Kantians, because he set the current agenda for philosophy [Hart,WD]
     Full Idea: We are all post-Kantians, ...because Kant set an agenda for philosophy that we are still working through.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: Hart says that the main agenda is set by Kant's desire to defend the principle of sufficient reason against Hume's attack on causation. I would take it more generally to be the assessment of metaphysics, and of a priori knowledge.
1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / d. Philosophy as puzzles
The problems are the monuments of philosophy [Hart,WD]
     Full Idea: The real monuments of philosophy are its problems.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: Presumably he means '....rather than its solutions'. No other subject would be very happy with that sort of claim. Compare Idea 8243. A complaint against analytic philosophy is that it has achieved no consensus at all.
1. Philosophy / F. Analytic Philosophy / 6. Logical Analysis
To study abstract problems, some knowledge of set theory is essential [Hart,WD]
     Full Idea: By now, no education in abstract pursuits is adequate without some familiarity with sets.
     From: William D. Hart (The Evolution of Logic [2010], 10)
     A reaction: A heart-sinking observation for those who aspire to study metaphysics and modality. The question is, what will count as 'some' familiarity? Are only professional logicians now allowed to be proper philosophers?
2. Reason / D. Definition / 12. Paraphrase
We could refer to tables as 'xs that are arranged tablewise' [Inwagen]
     Full Idea: We could paraphrase 'some chairs are heavier than some tables' as 'there are xs that are arranged chairwise and there are ys that are arranged tablewise and the xs are heavier than the ys'.
     From: Peter van Inwagen (Material Beings [1990], 11)
     A reaction: Liggins notes that this involves plural quantification. Being 'arranged tablewise' has become a rather notorious locution in modern ontology. We still have to retain identity, to pick out the xs.
3. Truth / C. Correspondence Truth / 2. Correspondence to Facts
Tarski showed how we could have a correspondence theory of truth, without using 'facts' [Hart,WD]
     Full Idea: It is an ancient and honourable view that truth is correspondence to fact; Tarski showed us how to do without facts here.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: This is a very interesting spin on Tarski, who certainly seems to endorse the correspondence theory, even while apparently inventing a new 'semantic' theory of truth. It is controversial how far Tarski's theory really is a 'correspondence' theory.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
Truth for sentences is satisfaction of formulae; for sentences, either all sequences satisfy it (true) or none do [Hart,WD]
     Full Idea: We explain truth for sentences in terms of satisfaction of formulae. The crux here is that for a sentence, either all sequences satisfy it or none do (with no middle ground). For formulae, some sequences may satisfy it and others not.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: This is the hardest part of Tarski's theory of truth to grasp.
3. Truth / F. Semantic Truth / 2. Semantic Truth
A first-order language has an infinity of T-sentences, which cannot add up to a definition of truth [Hart,WD]
     Full Idea: In any first-order language, there are infinitely many T-sentences. Since definitions should be finite, the agglomeration of all the T-sentences is not a definition of truth.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: This may be a warning shot aimed at Davidson's extensive use of Tarski's formal account in his own views on meaning in natural language.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
Conditional Proof: infer a conditional, if the consequent can be deduced from the antecedent [Hart,WD]
     Full Idea: A 'conditional proof' licenses inferences to a conditional from a deduction of its consequent from its antecedent.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: That is, a proof can be enshrined in an arrow.
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Each line of a truth table is a model [Fitting/Mendelsohn]
     Full Idea: Each line of a truth table is, in effect, a model.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
     A reaction: I find this comment illuminating. It is being connected with the more complex models of modal logic. Each line of a truth table is a picture of how the world might be.
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
∃y... is read as 'There exists an individual, call it y, such that...', and not 'There exists a y such that...' [Hart,WD]
     Full Idea: When a quantifier is attached to a variable, as in '∃(y)....', then it should be read as 'There exists an individual, call it y, such that....'. One should not read it as 'There exists a y such that...', which would attach predicate to quantifier.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: The point is to make clear that in classical logic the predicates attach to the objects, and not to some formal component like a quantifier.
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / a. Symbols of ML
Modal logic adds □ (necessarily) and ◊ (possibly) to classical logic [Fitting/Mendelsohn]
     Full Idea: For modal logic we add to the syntax of classical logic two new unary operators □ (necessarily) and ◊ (possibly).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.3)
We let 'R' be the accessibility relation: xRy is read 'y is accessible from x' [Fitting/Mendelsohn]
     Full Idea: We let 'R' be the accessibility relation: xRy is read 'y is accessible from x'.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.5)
The symbol ||- is the 'forcing' relation; 'Γ ||- P' means that P is true in world Γ [Fitting/Mendelsohn]
     Full Idea: The symbol ||- is used for the 'forcing' relation, as in 'Γ ||- P', which means that P is true in world Γ.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
The prefix σ names a possible world, and σ.n names a world accessible from that one [Fitting/Mendelsohn]
     Full Idea: A 'prefix' is a finite sequence of positive integers. A 'prefixed formula' is an expression of the form σ X, where σ is a prefix and X is a formula. A prefix names a possible world, and σ.n names a world accessible from that one.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / b. Terminology of ML
A 'constant' domain is the same for all worlds; 'varying' domains can be entirely separate [Fitting/Mendelsohn]
     Full Idea: In 'constant domain' semantics, the domain of each possible world is the same as every other; in 'varying domain' semantics, the domains need not coincide, or even overlap.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.5)
Modern modal logic introduces 'accessibility', saying xRy means 'y is accessible from x' [Fitting/Mendelsohn]
     Full Idea: Modern modal logic takes into consideration the way the modal relates the possible worlds, called the 'accessibility' relation. .. We let R be the accessibility relation, and xRy reads as 'y is accessible from x.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.5)
     A reaction: There are various types of accessibility, and these define the various modal logics.
A 'model' is a frame plus specification of propositions true at worlds, written < G,R,||- > [Fitting/Mendelsohn]
     Full Idea: A 'model' is a frame plus a specification of which propositional letters are true at which worlds. It is written as , where ||- is a relation between possible worlds and propositional letters. So Γ ||- P means P is true at world Γ.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
A 'frame' is a set G of possible worlds, with an accessibility relation R, written < G,R > [Fitting/Mendelsohn]
     Full Idea: A 'frame' consists of a non-empty set G, whose members are generally called possible worlds, and a binary relation R, on G, generally called the accessibility relation. We say the frame is the pair so that a single object can be talked about.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
Accessibility relations can be 'reflexive' (self-referring), 'transitive' (carries over), or 'symmetric' (mutual) [Fitting/Mendelsohn]
     Full Idea: A relation R is 'reflexive' if every world is accessible from itself; 'transitive' if the first world is related to the third world (ΓRΔ and ΔRΩ → ΓRΩ); and 'symmetric' if the accessibility relation is mutual.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.7)
     A reaction: The different systems of modal logic largely depend on how these accessibility relations are specified. There is also the 'serial' relation, which just says that any world has another world accessible to it.
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / c. Derivation rules of ML
S5: a) if n ◊X then kX b) if n ¬□X then k ¬X c) if n □X then k X d) if n ¬◊X then k ¬X [Fitting/Mendelsohn]
     Full Idea: Simplified S5 rules: a) if n ◊X then kX b) if n ¬□X then k ¬X c) if n □X then k X d) if n ¬◊X then k ¬X. 'n' picks any world; in a) and b) 'k' asserts a new world; in c) and d) 'k' refers to a known world
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
Negation: if σ ¬¬X then σ X [Fitting/Mendelsohn]
     Full Idea: General tableau rule for negation: if σ ¬¬X then σ X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Disj: a) if σ ¬(X∨Y) then σ ¬X and σ ¬Y b) if σ X∨Y then σ X or σ Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for disjunctions: a) if σ ¬(X ∨ Y) then σ ¬X and σ ¬Y b) if σ X ∨ Y then σ X or σ Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Existential: a) if σ ◊X then σ.n X b) if σ ¬□X then σ.n ¬X [n is new] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for existential modality: a) if σ ◊ X then σ.n X b) if σ ¬□ X then σ.n ¬X , where n introduces some new world (rather than referring to a world that can be seen).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
     A reaction: Note that the existential rule of ◊, usually read as 'possibly', asserts something about a new as yet unseen world, whereas □ only refers to worlds which can already be seen,
T reflexive: a) if σ □X then σ X b) if σ ¬◊X then σ ¬X [Fitting/Mendelsohn]
     Full Idea: System T reflexive rules (also for B, S4, S5): a) if σ □X then σ X b) if σ ¬◊X then σ ¬X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
D serial: a) if σ □X then σ ◊X b) if σ ¬◊X then σ ¬□X [Fitting/Mendelsohn]
     Full Idea: System D serial rules (also for T, B, S4, S5): a) if σ □X then σ ◊X b) if σ ¬◊X then σ ¬□X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
B symmetric: a) if σ.n □X then σ X b) if σ.n ¬◊X then σ ¬X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System B symmetric rules (also for S5): a) if σ.n □X then σ X b) if σ.n ¬◊X then σ ¬X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
4 transitive: a) if σ □X then σ.n □X b) if σ ¬◊X then σ.n ¬◊X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System 4 transitive rules (also for K4, S4, S5): a) if σ □X then σ.n □X b) if σ ¬◊X then σ.n ¬◊X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
4r rev-trans: a) if σ.n □X then σ □X b) if σ.n ¬◊X then σ ¬◊X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System 4r reversed-transitive rules (also for S5): a) if σ.n □X then σ □X b) if σ.n ¬◊X then σ ¬◊X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
If a proposition is possibly true in a world, it is true in some world accessible from that world [Fitting/Mendelsohn]
     Full Idea: If a proposition is possibly true in a world, then it is also true in some world which is accessible from that world. That is: Γ ||- ◊X ↔ for some Δ ∈ G, ΓRΔ then Δ ||- X.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
If a proposition is necessarily true in a world, it is true in all worlds accessible from that world [Fitting/Mendelsohn]
     Full Idea: If a proposition is necessarily true in a world, then it is also true in all worlds which are accessible from that world. That is: Γ ||- □X ↔ for every Δ ∈ G, if ΓRΔ then Δ ||- X.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
Conj: a) if σ X∧Y then σ X and σ Y b) if σ ¬(X∧Y) then σ ¬X or σ ¬Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for conjunctions: a) if σ X ∧ Y then σ X and σ Y b) if σ ¬(X ∧ Y) then σ ¬X or σ ¬Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Bicon: a)if σ(X↔Y) then σ(X→Y) and σ(Y→X) b) [not biconditional, one or other fails] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for biconditionals: a) if σ (X ↔ Y) then σ (X → Y) and σ (Y → X) b) if σ ¬(X ↔ Y) then σ ¬(X → Y) or σ ¬(Y → X)
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Implic: a) if σ ¬(X→Y) then σ X and σ ¬Y b) if σ X→Y then σ ¬X or σ Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for implications: a) if σ ¬(X → Y) then σ X and σ ¬Y b) if σ X → Y then σ ¬X or σ Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Universal: a) if σ ¬◊X then σ.m ¬X b) if σ □X then σ.m X [m exists] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for universal modality: a) if σ ¬◊ X then σ.m ¬X b) if σ □ X then σ.m X , where m refers to a world that can be seen (rather than introducing a new world).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
     A reaction: Note that the universal rule of □, usually read as 'necessary', only refers to worlds which can already be seen, whereas possibility (◊) asserts some thing about a new as yet unseen world.
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / b. System K
The system K has no accessibility conditions [Fitting/Mendelsohn]
     Full Idea: The system K has no frame conditions imposed on its accessibility relation.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
     A reaction: The system is named K in honour of Saul Kripke.
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / c. System D
□P → P is not valid in D (Deontic Logic), since an obligatory action may be not performed [Fitting/Mendelsohn]
     Full Idea: System D is usually thought of as Deontic Logic, concerning obligations and permissions. □P → P is not valid in D, since just because an action is obligatory, it does not follow that it is performed.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.12.2 Ex)
The system D has the 'serial' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system D has the 'serial' condition imposed on its accessibility relation - that is, every world must have some world which is accessible to it.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / d. System T
The system T has the 'reflexive' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system T has the 'reflexive' condition imposed on its accessibility relation - that is, every world must be accessible to itself.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / e. System K4
The system K4 has the 'transitive' condition on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system K4 has the 'transitive' condition imposed on its accessibility relation - that is, if a relation holds between worlds 1 and 2 and worlds 2 and 3, it must hold between worlds 1 and 3. The relation carries over.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / f. System B
The system B has the 'reflexive' and 'symmetric' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system B has the 'reflexive' and 'symmetric' conditions imposed on its accessibility relation - that is, every world must be accessible to itself, and any relation between worlds must be mutual.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
The system S4 has the 'reflexive' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system S4 has the 'reflexive' and 'transitive' conditions imposed on its accessibility relation - that is, every world is accessible to itself, and accessibility carries over a series of worlds.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
System S5 has the 'reflexive', 'symmetric' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system S5 has the 'reflexive', 'symmetric' and 'transitive' conditions imposed on its accessibility relation - that is, every world is self-accessible, and accessibility is mutual, and it carries over a series of worlds.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
     A reaction: S5 has total accessibility, and hence is the most powerful system (though it might be too powerful).
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
Modality affects content, because P→◊P is valid, but ◊P→P isn't [Fitting/Mendelsohn]
     Full Idea: P→◊P is usually considered to be valid, but its converse, ◊P→P is not, so (by Frege's own criterion) P and possibly-P differ in conceptual content, and there is no reason why logic should not be widened to accommodate this.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.2)
     A reaction: Frege had denied that modality affected the content of a proposition (1879:p.4). The observation here is the foundation for the need for a modal logic.
4. Formal Logic / D. Modal Logic ML / 5. Epistemic Logic
In epistemic logic knowers are logically omniscient, so they know that they know [Fitting/Mendelsohn]
     Full Idea: In epistemic logic the knower is treated as logically omniscient. This is puzzling because one then cannot know something and yet fail to know that one knows it (the Principle of Positive Introspection).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.11)
     A reaction: This is nowadays known as the K-K Problem - to know, must you know that you know. Broadly, we find that externalists say you don't need to know that you know (so animals know things), but internalists say you do need to know that you know.
Read epistemic box as 'a knows/believes P' and diamond as 'for all a knows/believes, P' [Fitting/Mendelsohn]
     Full Idea: In epistemic logic we read Υ as 'KaP: a knows that P', and ◊ as 'PaP: it is possible, for all a knows, that P' (a is an individual). For belief we read them as 'BaP: a believes that P' and 'CaP: compatible with everything a believes that P'.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.11)
     A reaction: [scripted capitals and subscripts are involved] Hintikka 1962 is the source of this. Fitting and Mendelsohn prefer □ to read 'a is entitled to know P', rather than 'a knows that P'.
4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
F: will sometime, P: was sometime, G: will always, H: was always [Fitting/Mendelsohn]
     Full Idea: We introduce four future and past tense operators: FP: it will sometime be the case that P. PP: it was sometime the case that P. GP: it will always be the case that P. HP: it has always been the case that P. (P itself is untensed).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.10)
     A reaction: Temporal logic begins with A.N. Prior, and starts with □ as 'always', and ◊ as 'sometimes', but then adds these past and future divisions. Two different logics emerge, taking □ and ◊ as either past or as future.
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The Barcan says nothing comes into existence; the Converse says nothing ceases; the pair imply stability [Fitting/Mendelsohn]
     Full Idea: The Converse Barcan says nothing passes out of existence in alternative situations. The Barcan says that nothing comes into existence. The two together say the same things exist no matter what the situation.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.9)
     A reaction: I take the big problem to be that these reflect what it is you want to say, and that does not keep stable across a conversation, so ordinary rational discussion sometimes asserts these formulas, and 30 seconds later denies them.
The Barcan corresponds to anti-monotonicity, and the Converse to monotonicity [Fitting/Mendelsohn]
     Full Idea: The Barcan formula corresponds to anti-monotonicity, and the Converse Barcan formula corresponds to monotonicity.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 6.3)
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Set theory articulates the concept of order (through relations) [Hart,WD]
     Full Idea: It is set theory, and more specifically the theory of relations, that articulates order.
     From: William D. Hart (The Evolution of Logic [2010])
     A reaction: It would seem that we mainly need set theory in order to talk accurately about order, and about infinity. The two come together in the study of the ordinal numbers.
Nowadays ZFC and NBG are the set theories; types are dead, and NF is only useful for the whole universe [Hart,WD]
     Full Idea: The theory of types is a thing of the past. There is now nothing to choose between ZFC and NBG (Neumann-Bernays-Gödel). NF (Quine's) is a more specialized taste, but is a place to look if you want the universe.
     From: William D. Hart (The Evolution of Logic [2010], 3)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
∈ relates across layers, while ⊆ relates within layers [Hart,WD]
     Full Idea: ∈ relates across layers (Plato is a member of his unit set and the set of people), while ⊆ relates within layers (the singleton of Plato is a subset of the set of people). This distinction only became clear in the 19th century.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: Getting these two clear may be the most important distinction needed to understand how set theory works.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Without the empty set we could not form a∩b without checking that a and b meet [Hart,WD]
     Full Idea: Without the empty set, disjoint sets would have no intersection, and we could not form a∩b without checking that a and b meet. This is an example of the utility of the empty set.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: A novice might plausibly ask why there should be an intersection for every pair of sets, if they have nothing in common except for containing this little puff of nothingness. But then what do novices know?
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
In the modern view, foundation is the heart of the way to do set theory [Hart,WD]
     Full Idea: In the second half of the twentieth century there emerged the opinion that foundation is the heart of the way to do set theory.
     From: William D. Hart (The Evolution of Logic [2010], 3)
     A reaction: It is foundation which is the central axiom of the iterative conception of sets, where each level of sets is built on previous levels, and they are all 'well-founded'.
Foundation Axiom: an nonempty set has a member disjoint from it [Hart,WD]
     Full Idea: The usual statement of Foundation is that any nonempty set has a member disjoint from it. This phrasing is ordinal-free and closer to the primitives of ZFC.
     From: William D. Hart (The Evolution of Logic [2010], 3)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
We can choose from finite and evident sets, but not from infinite opaque ones [Hart,WD]
     Full Idea: When a set is finite, we can prove it has a choice function (∀x x∈A → f(x)∈A), but we need an axiom when A is infinite and the members opaque. From infinite shoes we can pick a left one, but from socks we need the axiom of choice.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: The socks example in from Russell 1919:126.
With the Axiom of Choice every set can be well-ordered [Hart,WD]
     Full Idea: It follows from the Axiom of Choice that every set can be well-ordered.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: For 'well-ordered' see Idea 13460. Every set can be ordered with a least member.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
If we accept that V=L, it seems to settle all the open questions of set theory [Hart,WD]
     Full Idea: It has been said (by Burt Dreben) that the only reason set theorists do not generally buy the view that V = L is that it would put them out of business by settling their open questions.
     From: William D. Hart (The Evolution of Logic [2010], 10)
     A reaction: Hart says V=L breaks with the interative conception of sets at level ω+1, which is countable is the constructible view, but has continuum many in the cumulative (iterative) hierarch. The constructible V=L view is anti-platonist.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve set theory has trouble with comprehension, the claim that every predicate has an extension [Hart,WD]
     Full Idea: 'Comprehension' is the assumption that every predicate has an extension. Naïve set theory is the theory whose axioms are extensionality and comprehension, and comprehension is thought to be its naivety.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: This doesn't, of course, mean that there couldn't be a more modest version of comprehension. The notorious difficulty come with the discovery of self-referring predicates which can't possibly have extensions.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception may not be necessary, and may have fixed points or infinitely descending chains [Hart,WD]
     Full Idea: That the iterative sets suffice for most of ZFC does not show they are necessary, nor is it evident that the set of operations has no fixed points (as 0 is a fixed point for square-of), and no infinitely descending chains (like negative integers).
     From: William D. Hart (The Evolution of Logic [2010], 3)
     A reaction: People don't seem to worry that they aren't 'necessary', and further measures are possible to block infinitely descending chains.
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A 'partial ordering' is irreflexive and transitive; the sets are ordered, but not the subsets [Hart,WD]
     Full Idea: We say that a binary relation R 'partially orders' a field A just in case R is irreflexive (so that nothing bears R to itself) and transitive. When the set is {a,b}, its subsets {a} and {b} are incomparable in a partial ordering.
     From: William D. Hart (The Evolution of Logic [2010], 1)
A partial ordering becomes 'total' if any two members of its field are comparable [Hart,WD]
     Full Idea: A partial ordering is a 'total ordering' just in case any two members of its field are comparable, that is, either a is R to b, or b is R to a, or a is b.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: See Idea 13457 for 'partial ordering'. The three conditions are known as the 'trichotomy' condition.
'Well-ordering' must have a least member, so it does the natural numbers but not the integers [Hart,WD]
     Full Idea: A total order 'well-orders' its field just in case any nonempty subset B of its field has an R-least member, that is, there is a b in B such that for any a in B different from b, b bears R to a. So less-than well-orders natural numbers, but not integers.
     From: William D. Hart (The Evolution of Logic [2010], 1)
     A reaction: The natural numbers have a starting point, but the integers are infinite in both directions. In plain English, an order is 'well-ordered' if there is a starting point.
Von Neumann defines α<β as α∈β [Hart,WD]
     Full Idea: One of the glories of Von Neumann's theory of numbers is to define α < β to mean that α ∈ β.
     From: William D. Hart (The Evolution of Logic [2010], 3)
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Maybe sets should be rethought in terms of the even more basic categories [Hart,WD]
     Full Idea: Some have claimed that sets should be rethought in terms of still more basic things, categories.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: [He cites F.William Lawvere 1966] It appears to the the context of foundations for mathematics that he has in mind.
4. Formal Logic / G. Formal Mereology / 1. Mereology
Mereology is 'nihilistic' (just atoms) or 'universal' (no restrictions on what is 'whole') [Inwagen, by Varzi]
     Full Idea: Van Ingwagen writes of 'mereological nihilism' (that only mereological atoms exist) and of 'mereological universalism' (adhering to the principle of Unrestricted Composition).
     From: report of Peter van Inwagen (Material Beings [1990], p.72-) by Achille Varzi - Mereology 4.3
     A reaction: They both look mereologically nihilistic to me, in comparison with an account that builds on 'natural' wholes and their parts. You can only be 'unrestricted' if you view the 'wholes' in your vast ontology as pretty meaningless (as Lewis does, Idea 10660).
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
The 'Law' of Excluded Middle needs all propositions to be definitely true or definitely false [Inwagen]
     Full Idea: I think the validity of the 'Law' of Excluded Middle depends on the assumption that every proposition is definitely true or definitely false.
     From: Peter van Inwagen (Material Beings [1990], 18)
     A reaction: I think this is confused. He cites vagueness as the problem, but that is a problem for Bivalence. If excluded middle is read as 'true or not-true', that leaves the meaning of 'not-true' open, and never mentions the bivalent 'false'.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
Variables are just like pronouns; syntactic explanations get muddled over dummy letters [Inwagen]
     Full Idea: Explanations in terms of syntax do not satisfactorily distinguish true variables from dummy or schematic letters. Identifying variables with pronouns, however, provides a genuine explanation of what variables are.
     From: Peter van Inwagen (Material Beings [1990], 02)
     A reaction: I like this because it shows that our ordinary thought and speech use variables all the time ('I've forgotten something - what was it?'). He says syntax is fine for maths, but not for ordinary understanding.
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
'Predicate abstraction' abstracts predicates from formulae, giving scope for constants and functions [Fitting/Mendelsohn]
     Full Idea: 'Predicate abstraction' is a key idea. It is a syntactic mechanism for abstracting a predicate from a formula, providing a scoping mechanism for constants and function symbols similar to that provided for variables by quantifiers.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], Pref)
5. Theory of Logic / G. Quantification / 3. Objectual Quantification
The universal quantifier can't really mean 'all', because there is no universal set [Hart,WD]
     Full Idea: All the main set theories deny that there is a set of which everything is a member. No interpretation has a domain with everything in it. So the universal quantifier never gets to mean everything all at once; 'all' does not mean all.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: Could you have an 'uncompleted' universal set, in the spirit of uncompleted infinities? In ordinary English we can talk about 'absolutely everything' - we just can't define a set of everything. Must we 'define' our domain?
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Modern model theory begins with the proof of Los's Conjecture in 1962 [Hart,WD]
     Full Idea: The beginning of modern model theory was when Morley proved Los's Conjecture in 1962 - that a complete theory in a countable language categorical in one uncountable cardinal is categorical in all.
     From: William D. Hart (The Evolution of Logic [2010], 9)
Model theory studies how set theory can model sets of sentences [Hart,WD]
     Full Idea: Modern model theory investigates which set theoretic structures are models for which collections of sentences.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: So first you must choose your set theory (see Idea 13497). Then you presumably look at how to formalise sentences, and then look at the really tricky ones, many of which will involve various degrees of infinity.
Model theory is mostly confined to first-order theories [Hart,WD]
     Full Idea: There is no developed methematics of models for second-order theories, so for the most part, model theory is about models for first-order theories.
     From: William D. Hart (The Evolution of Logic [2010], 9)
Models are ways the world might be from a first-order point of view [Hart,WD]
     Full Idea: Models are ways the world might be from a first-order point of view.
     From: William D. Hart (The Evolution of Logic [2010], 9)
5. Theory of Logic / K. Features of Logics / 6. Compactness
First-order logic is 'compact': consequences of a set are consequences of a finite subset [Hart,WD]
     Full Idea: First-order logic is 'compact', which means that any logical consequence of a set (finite or infinite) of first-order sentences is a logical consequence of a finite subset of those sentences.
     From: William D. Hart (The Evolution of Logic [2010], 3)
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox: we succeed in referring to a number, with a term which says we can't do that [Hart,WD]
     Full Idea: Berry's Paradox: by the least number principle 'the least number denoted by no description of fewer than 79 letters' exists, but we just referred to it using a description of 77 letters.
     From: William D. Hart (The Evolution of Logic [2010], 3)
     A reaction: I struggle with this. If I refer to 'an object to which no human being could possibly refer', have I just referred to something? Graham Priest likes this sort of idea.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
The Burali-Forti paradox is a crisis for Cantor's ordinals [Hart,WD]
     Full Idea: The Burali-Forti Paradox was a crisis for Cantor's theory of ordinal numbers.
     From: William D. Hart (The Evolution of Logic [2010], 3)
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
The machinery used to solve the Liar can be rejigged to produce a new Liar [Hart,WD]
     Full Idea: In effect, the machinery introduced to solve the liar can always be rejigged to yield another version the liar.
     From: William D. Hart (The Evolution of Logic [2010], 4)
     A reaction: [He cites Hans Herzberger 1980-81] The machinery is Tarski's device of only talking about sentences of a language by using a 'metalanguage'.
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / b. The Heap paradox ('Sorites')
There are no heaps [Inwagen]
     Full Idea: Fortunately ....there are no heaps.
     From: Peter van Inwagen (Material Beings [1990], 18)
     A reaction: This is the nihilist view of (inorganic) physical objects. If a wild view solves all sorts of problems, one should take it serious. It is why I take reductive physicalism about the mind seriously. (Well, it's true, actually)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
The less-than relation < well-orders, and partially orders, and totally orders the ordinal numbers [Hart,WD]
     Full Idea: We can show (using the axiom of choice) that the less-than relation, <, well-orders the ordinals, ...and that it partially orders the ordinals, ...and that it totally orders the ordinals.
     From: William D. Hart (The Evolution of Logic [2010], 1)
The axiom of infinity with separation gives a least limit ordinal ω [Hart,WD]
     Full Idea: The axiom of infinity with separation yields a least limit ordinal, which is called ω.
     From: William D. Hart (The Evolution of Logic [2010], 3)
There are at least as many infinite cardinals as transfinite ordinals (because they will map) [Hart,WD]
     Full Idea: Since we can map the transfinite ordinals one-one into the infinite cardinals, there are at least as many infinite cardinals as transfinite ordinals.
     From: William D. Hart (The Evolution of Logic [2010], 1)
Von Neumann's ordinals generalise into the transfinite better, because Zermelo's ω is a singleton [Hart,WD]
     Full Idea: It is easier to generalize von Neumann's finite ordinals into the transfinite. All Zermelo's nonzero finite ordinals are singletons, but if ω were a singleton it is hard to see how if could fail to be the successor of its member and so not a limit.
     From: William D. Hart (The Evolution of Logic [2010], 3)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
19th century arithmetization of analysis isolated the real numbers from geometry [Hart,WD]
     Full Idea: The real numbers were not isolated from geometry until the arithmetization of analysis during the nineteenth century.
     From: William D. Hart (The Evolution of Logic [2010], 1)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
We can establish truths about infinite numbers by means of induction [Hart,WD]
     Full Idea: Mathematical induction is a way to establish truths about the infinity of natural numbers by a finite proof.
     From: William D. Hart (The Evolution of Logic [2010], 5)
     A reaction: If there are truths about infinities, it is very tempting to infer that the infinities must therefore 'exist'. A nice, and large, question in philosophy is whether there can be truths without corresponding implications of existence.
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Euclid has a unique parallel, spherical geometry has none, and saddle geometry has several [Hart,WD]
     Full Idea: There is a familiar comparison between Euclid (unique parallel) and 'spherical' geometry (no parallel) and 'saddle' geometry (several parallels).
     From: William D. Hart (The Evolution of Logic [2010], 2)
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Mathematics makes existence claims, but philosophers usually say those are never analytic [Hart,WD]
     Full Idea: The thesis that no existence proposition is analytic is one of the few constants in philosophical consciences, but there are many existence claims in mathematics, such as the infinity of primes, five regular solids, and certain undecidable propositions.
     From: William D. Hart (The Evolution of Logic [2010], 2)
7. Existence / C. Structure of Existence / 8. Stuff / a. Pure stuff
I reject talk of 'stuff', and treat it in terms of particles [Inwagen]
     Full Idea: I have a great deal of difficulty with an ontology that includes 'stuffs' in addition to things. ...I prefer to replace talk of sameness of matter with talk of sameness of particles.
     From: Peter van Inwagen (Material Beings [1990], 14)
     A reaction: Van Inwagen is wedded to the idea that reality is composed of 'simples' - even if physicists seem now to talk of 'fields' as much as they do about objects in the fields. Has philosophy yet caught up with Maxwell?
Mass words do not have plurals, or numerical adjectives, or use 'fewer' [Hart,WD]
     Full Idea: Jespersen calls a noun a mass word when it has no plural, does not take numerical adjectives, and does not take 'fewer'.
     From: William D. Hart (The Evolution of Logic [2010], 3)
     A reaction: Jespersen was a great linguistics expert.
7. Existence / D. Theories of Reality / 10. Vagueness / d. Vagueness as linguistic
Singular terms can be vague, because they can contain predicates, which can be vague [Inwagen]
     Full Idea: Since singular terms can contain predicates, and since vague predicates are common, vague singular terms are common. For 'the tallest man that Sally knows' there are lots of men for whom it is unclear whether Sally knows them.
     From: Peter van Inwagen (Material Beings [1990], 17)
9. Objects / A. Existence of Objects / 1. Physical Objects
Material objects are in space and time, move, have a surface and mass, and are made of some stuff [Inwagen]
     Full Idea: A thing is a material object if it occupies space and endures through time and can move about in space (literally move, unlike a shadow or wave or reflection) and has a surface and has a mass and is made of a certain stuff or stuffs.
     From: Peter van Inwagen (Material Beings [1990], 01)
     A reaction: It is not at all clear what electrons (which must count for him as 'simples') are made of.
Maybe table-shaped particles exist, but not tables [Inwagen, by Lowe]
     Full Idea: Van Ingwagen holds that although table-shaped collections of particles exist, tables do not.
     From: report of Peter van Inwagen (Material Beings [1990], Ch.13) by E.J. Lowe - The Possibility of Metaphysics 2.3
     A reaction: I find this idea appealing. See the ideas of Trenton Merricks. When you get down to micro-level, it is hard to individuate a table among the force fields, and hard to distinguish a table from a smashed or burnt table. An ontology without objects?
9. Objects / A. Existence of Objects / 6. Nihilism about Objects
Nihilism says composition between single things is impossible [Inwagen]
     Full Idea: Nihilism about objects says there is a Y such that the Xs compose it if and only if there is only one of the Xs.
     From: Peter van Inwagen (Material Beings [1990], 08)
     A reaction: He says that Unger, the best known 'nihilist' about objects, believes a different version - claiming there are composites, but they never make up the ordinary objects we talk about.
If there are no tables, but tables are things arranged tablewise, the denial of tables is a contradiction [Liggins on Inwagen]
     Full Idea: Van Inwagen says 'there are no tables', and 'there are tables' means 'there are some things arranged tablewise'. Presumably 'there are no tables' negates the latter claim, saying no things are arranged tablewise. But he should think that is false.
     From: comment on Peter van Inwagen (Material Beings [1990], 10) by David Liggins - Nihilism without Self-Contradiction 3
     A reaction: Liggins's nice paper shows that Van Inwagen is in a potential state of contradiction when he starts saying that there are no tables, but that there are things arranged tablewise, and that they amount to tables. Liggins offers him an escape.
Actions by artefacts and natural bodies are disguised cooperations, so we don't need them [Inwagen]
     Full Idea: All the activities apparently carried out by shelves and stars and other artefacts and natural bodies can be understood as disguised cooperative activities. And, therefore, we are not forced to grant existence to any artefacts or natural bodies.
     From: Peter van Inwagen (Material Beings [1990], 12)
     A reaction: In 'the crowd tore her to pieces' are we forced to accept the existence of a crowd? We can't say 'Jack tore her to pieces' and 'Jill tore her to pieces'. If a plural quantification is unavoidable, we have to accept the plurality. Perhaps.
9. Objects / B. Unity of Objects / 1. Unifying an Object / b. Unifying aggregates
Every physical thing is either a living organism or a simple [Inwagen]
     Full Idea: The thesis about composition and parthood that I am advocating has far-reaching ontological consequences: that every physical thing is either a living organism or a simple.
     From: Peter van Inwagen (Material Beings [1990], 10)
     A reaction: A 'simple' is a placeholder for anything considered to be a fundamental unit of existence (such as an electron or a quark). This amazingly sharp distinction strikes me as utterly implausible. There is too much in the middle ground.
9. Objects / B. Unity of Objects / 3. Unity Problems / c. Statue and clay
The statue and lump seem to share parts, but the statue is not part of the lump [Inwagen]
     Full Idea: Those who believe that the statue is distinct from the lump should concede that whatever shares a part with the statue shares a part with the lump but deny that the statue is a part of the lump.
     From: Peter van Inwagen (Material Beings [1990], 05)
     A reaction: Standard mereology says if they share all their parts then they are the same thing, so it is hard to explain how they are 'distinct'. The distinction is only modal - that they could be separated (by squashing, or by part substitution).
If you knead clay you make an infinite series of objects, but they are rearrangements, not creations [Inwagen]
     Full Idea: If you can make a (random) gollyswoggle by accident by kneading clay, then you must be causing the generation and corruption of a series of objects of infinitesimal duration. ...We have not augmented the furniture of the world but only rearranged it.
     From: Peter van Inwagen (Material Beings [1990], 13)
     A reaction: Van Inwagen's final conclusion is a bit crazy, but I am in sympathy with his general scepticism about what sorts of things definitively constitute 'objects'. He overrates simples, and he overrates lives.
9. Objects / C. Structure of Objects / 3. Matter of an Object
I assume matter is particulate, made up of 'simples' [Inwagen]
     Full Idea: I assume in this book that matter is ultimately particulate. Every material being is composed of things that have no proper parts: 'elementary particles' or 'mereological atoms' or 'metaphysical simples'.
     From: Peter van Inwagen (Material Beings [1990], Pref)
     A reaction: It may be that modern physics doesn't support this, if 'fields' is the best term for what is fundamental. Best to treat his book as hypothetical - IF there are just simples, proceed as follows.
9. Objects / C. Structure of Objects / 5. Composition of an Object
If contact causes composition, do two colliding balls briefly make one object? [Inwagen]
     Full Idea: If composition just requires contact, if I cause the cue ball to rebound from the eight ball, do I thereby create a short-lived object shaped like two slightly flattened spheres in contact?
     From: Peter van Inwagen (Material Beings [1990], 03)
     A reaction: [compressed]
If bricks compose a house, that is at least one thing, but it might be many things [Inwagen]
     Full Idea: If composition just requires contact, that tells us that the bricks of a house compose at least one thing; it does not tell us that they also compose at most one thing.
     From: Peter van Inwagen (Material Beings [1990], 04)
9. Objects / C. Structure of Objects / 8. Parts of Objects / a. Parts of objects
I think parthood involves causation, and not just a reasonably stable spatial relationship [Inwagen]
     Full Idea: I propose that parthood essentially involves causation. Too many philosophers have supposed that objects compose something when and only when they stand in some (more or less stable) spatial relationship to one another.
     From: Peter van Inwagen (Material Beings [1990], 09)
     A reaction: I have to say that I like this, even though it comes from a thinker who is close to nihilism about ordinary non-living objects. He goes on to say that only a 'life' provides the right sort of causal relationship.
We can deny whole objects but accept parts, by referring to them as plurals within things [Inwagen, by Liggins]
     Full Idea: Van Inwagen's claim that nothing has parts causes incredulity. ..But the problem is not with endorsing the sentence 'Some things have parts'; it is with interpreting this sentence by means of singular resources rather than plural ones.
     From: report of Peter van Inwagen (Material Beings [1990], 7) by David Liggins - Nihilism without Self-Contradiction
     A reaction: Van Inwagen notoriously denies the existence of normal physical objects. Liggins shows that modern formal plural quantification gives a better way of presenting his theory, by accepting tables and parts of tables as plurals of basic entities.
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
Special Composition Question: when is a thing part of something? [Inwagen]
     Full Idea: The Special Composition Question asks, In what circumstances is a thing a (proper) part of something?
     From: Peter van Inwagen (Material Beings [1990], 02)
     A reaction: [He qualifies this formulation as 'misleading'] It's a really nice basic question for the metaphysics of objects.
9. Objects / D. Essence of Objects / 8. Essence as Explanatory
The essence of a star includes the released binding energy which keeps it from collapse [Inwagen]
     Full Idea: I think it is part of the essence of a star that the radiation pressures that oppose the star's tendency to gravitational collapse has its source in the release of no-longer-needed nuclear binding energy when colliding nuclei fuse in the star's hot core.
     From: Peter van Inwagen (Material Beings [1990], 07)
     A reaction: A perfect example of giving the essence of something as the bottom level of its explanation. This even comes from someone who doesn't really believe in stars!
9. Objects / D. Essence of Objects / 11. Essence of Artefacts
The persistence of artifacts always covertly involves intelligent beings [Inwagen]
     Full Idea: Statements that are apparently about the persistence of artifacts make covert reference to the dispositions of intelligent beings to maintain certain arrangements of matter.
     From: Peter van Inwagen (Material Beings [1990], 13)
     A reaction: If you build a self-sustaining windmill that pumps water, that seems to have an identity of its own, apart from the intentions of whoever makes it and repairs it. The function of an artefact is not just the function we want it to have.
9. Objects / E. Objects over Time / 7. Intermittent Objects
When an electron 'leaps' to another orbit, is the new one the same electron? [Inwagen]
     Full Idea: Is the 'new' electron in the lower orbit the one that was in the higher orbit? Physics, as far as I can tell, has nothing to say about this.
     From: Peter van Inwagen (Material Beings [1990], 14)
     A reaction: I suspect that physicists would say that philosophers are worrying about such questions because they haven't grasped the new conceptual scheme that emerged in 1926. The poor mutts insist on hanging on to 'objects'.
9. Objects / E. Objects over Time / 9. Ship of Theseus
If you reject transitivity of vague identity, there is no Ship of Theseus problem [Inwagen]
     Full Idea: If you have rejected the Principle of the Transitivity of (vague) Identity, it is hard to see how the problem of the Ship of Theseus could arise.
     From: Peter van Inwagen (Material Beings [1990], 18)
     A reaction: I think this may well be the best solution to the whole problem
9. Objects / F. Identity among Objects / 1. Concept of Identity
We should talk of the transitivity of 'identity', and of 'definite identity' [Inwagen]
     Full Idea: In some contexts, the principle of 'the transitivity of identity' should be called 'the transitivity of definite identity'.
     From: Peter van Inwagen (Material Beings [1990], 18)
     A reaction: He is making room for a person to retain identity despite having changed. Applause from me.
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The Indiscernibility of Identicals has been a big problem for modal logic [Fitting/Mendelsohn]
     Full Idea: Equality has caused much grief for modal logic. Many of the problems, which have struck at the heart of the coherence of modal logic, stem from the apparent violations of the Indiscernibility of Identicals.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 7.1)
     A reaction: Thus when I say 'I might have been three inches taller', presumably I am referring to someone who is 'identical' to me, but who lacks one of my properties. A simple solution is to say that the person is 'essentially' identical.
10. Modality / C. Sources of Modality / 5. Modality from Actuality
Actuality proves possibility, but that doesn't explain how it is possible [Inwagen]
     Full Idea: A proof of actuality is a proof of possibility, but that does not invariably explain the possibility whose existence it demonstrates, for we may know that a certain thing is actual (and hence possible) but have no explanation of how it could be possible.
     From: Peter van Inwagen (Material Beings [1990], 12)
     A reaction: I like this, because my project is to see all of philosophy in terms of explanation rather than of description.
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
□ must be sensitive as to whether it picks out an object by essential or by contingent properties [Fitting/Mendelsohn]
     Full Idea: If □ is to be sensitive to the quality of the truth of a proposition in its scope, then it must be sensitive as to whether an object is picked out by an essential property or by a contingent one.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.3)
     A reaction: This incredibly simple idea strikes me as being powerful and important. ...However, creating illustrative examples leaves me in a state of confusion. You try it. They cite '9' and 'number of planets'. But is it just nominal essence? '9' must be 9.
Objects retain their possible properties across worlds, so a bundle theory of them seems best [Fitting/Mendelsohn]
     Full Idea: The property of 'possibly being a Republican' is as much a property of Bill Clinton as is 'being a democrat'. So we don't peel off his properties from world to world. Hence the bundle theory fits our treatment of objects better than bare particulars.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 7.3)
     A reaction: This bundle theory is better described in recent parlance as the 'modal profile'. I am reluctant to talk of a modal truth about something as one of its 'properties'. An objects, then, is a bundle of truths?
10. Modality / E. Possible worlds / 3. Transworld Objects / c. Counterparts
Counterparts reduce counterfactual identity to problems about similarity relations [Inwagen]
     Full Idea: Counterpart Theory essentially reduces all problems about counterfactual identity to problems about choosing appropriate similarity relations. That is, Counterpart Theory essentially eliminates problems of counterfactual identity as such.
     From: Peter van Inwagen (Material Beings [1990], 14)
Counterpart relations are neither symmetric nor transitive, so there is no logic of equality for them [Fitting/Mendelsohn]
     Full Idea: The main technical problem with counterpart theory is that the being-a-counterpart relation is, in general, neither symmetric nor transitive, so no natural logic of equality is forthcoming.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.5)
     A reaction: That is, nothing is equal to a counterpart, either directly or indirectly.
10. Modality / E. Possible worlds / 3. Transworld Objects / e. Possible Objects
A merely possible object clearly isn't there, so that is a defective notion [Inwagen]
     Full Idea: The notion of a merely possible object is an even more defective notion than the notion of a borderline object; after all, a merely possible object is an object that definitely isn't there.
     From: Peter van Inwagen (Material Beings [1990], 19)
Merely possible objects must be consistent properties, or haecceities [Inwagen]
     Full Idea: Talk of merely possible objects may be redeemed in either maximally consistent sets of properties or in haecceities.
     From: Peter van Inwagen (Material Beings [1990], 19)
12. Knowledge Sources / A. A Priori Knowledge / 2. Self-Evidence
Fregean self-evidence is an intrinsic property of basic truths, rules and definitions [Hart,WD]
     Full Idea: The conception of Frege is that self-evidence is an intrinsic property of the basic truths, rules, and thoughts expressed by definitions.
     From: William D. Hart (The Evolution of Logic [2010], p.350)
     A reaction: The problem is always that what appears to be self-evident may turn out to be wrong. Presumably the effort of arriving at a definition ought to clarify and support the self-evident ingredient.
12. Knowledge Sources / A. A Priori Knowledge / 11. Denying the A Priori
The failure of key assumptions in geometry, mereology and set theory throw doubt on the a priori [Hart,WD]
     Full Idea: In the case of the parallels postulate, Euclid's fifth axiom (the whole is greater than the part), and comprehension, saying was believing for a while, but what was said was false. This should make a shrewd philosopher sceptical about a priori knowledge.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: Euclid's fifth is challenged by infinite numbers, and comprehension is challenged by Russell's paradox. I can't see a defender of the a priori being greatly worried about these cases. No one ever said we would be right - in doing arithmetic, for example.
18. Thought / D. Concepts / 3. Ontology of Concepts / c. Fregean concepts
The Fregean concept of GREEN is a function assigning true to green things, and false to the rest [Hart,WD]
     Full Idea: A Fregean concept is a function that assigns to each object a truth value. So instead of the colour green, the concept GREEN assigns truth to each green thing, but falsity to anything else.
     From: William D. Hart (The Evolution of Logic [2010], 2)
     A reaction: This would seem to immediately hit the renate/cordate problem, if there was a world in which all and only the green things happened to be square. How could Frege then distinguish the green from the square? Compare Idea 8245.
27. Natural Reality / B. Modern Physics / 3. Chromodynamics / a. Chromodynamics
The strong force pulls, but also pushes apart if nucleons get too close together [Inwagen]
     Full Idea: The strong force doesn't always pull nucleons together, but pushes them apart if they get too close.
     From: Peter van Inwagen (Material Beings [1990], 07)
     A reaction: Philosophers tend to learn their physics from other philosophers. But that's because philosophers are brilliant at picking out the interesting parts of physics, and skipping the boring stuff.
27. Natural Reality / F. Chemistry / 2. Modern Elements
Is one atom a piece of gold, or is a sizable group of atoms required? [Inwagen]
     Full Idea: A physicist once told me that of course a gold atom was a piece of gold, and a physical chemist has assured me that the smallest possible piece of gold would have to be composed of sixteen or seventeen atoms.
     From: Peter van Inwagen (Material Beings [1990], 01)
     A reaction: The issue is at what point all the properties that we normally begin to associate with gold begin to appear. One water molecule can hardly have a degree of viscosity or liquidity.
27. Natural Reality / G. Biology / 2. Life
At the lower level, life trails off into mere molecular interaction [Inwagen]
     Full Idea: The lives of the lower links of the Great Chain of Being trail off into vague, temporary episodes of molecular interaction.
     From: Peter van Inwagen (Material Beings [1990], 18)
     A reaction: His case involves conceding all sorts of vagueness to life, but asserting the utter distinctness of the full blown cases of more elaborate life. I don't really concede the distinction.
A tumour may spread a sort of life, but it is not a life, or an organism [Inwagen]
     Full Idea: A tumour is not an organism (or a parasite) and there is no self-regulating event that is its life. It does not fill one space, but is a locus within which a certain sort of thing is happening: the spreading of a certain sort of (mass-term) life.
     From: Peter van Inwagen (Material Beings [1990], 09)
Being part of an organism's life is a matter of degree, and vague [Inwagen]
     Full Idea: Being caught up in the life of an organism is, like being rich or being tall, a matter of degree, and is in that sense a vague condition.
     From: Peter van Inwagen (Material Beings [1990], 17)
     A reaction: Van Inwagen is trying to cover himself, given that he makes a sharp distinction between living organisms, which are unified objects, and everything else, which isn't. There may be a vague centre to a 'life', as well as vague boundaries.
A flame is like a life, but not nearly so well individuated [Inwagen]
     Full Idea: A flame, though it is a self-maintaining event, does not seem to be nearly so well individuated as a life.
     From: Peter van Inwagen (Material Beings [1990], 09)
     A reaction: This is to counter the standard problem that if you attempt to define 'life', fire turns out to tick nearly all the same boxes. The concept of 'individuated' often strikes me as unsatisfactory. How does a bonfire fail to be individuated?
If God were to 'reassemble' my atoms of ten years ago, the result would certainly not be me [Inwagen]
     Full Idea: If God were to 'reassemble' the atoms that composed me ten years ago, the resulting organism would certainly not be me.
     From: Peter van Inwagen (Material Beings [1990], 13)
     A reaction: What is obvious to Van Inwagen is not obvious to me. He thinks lives are special. Such examples just leave us bewildered about what counts as 'the same', because our concept of sameness wasn't designed to deal with such cases.
Some events are only borderline cases of lives [Inwagen]
     Full Idea: There are events of which it is neither definitely true nor definitely false that those events are lives. I do not see how we can deny this.
     From: Peter van Inwagen (Material Beings [1990], 18)
     A reaction: Very frustrating, since this is my main objection to Van Inwagen's distinction between unified lives and mere collections of simples. Some boundaries are real enough, despite their vagueness, and others indicate that there is no real distinction.
Unlike waves, lives are 'jealous'; it is almost impossible for them to overlap [Inwagen]
     Full Idea: A wave is not a 'jealous' event. Lives, however, are jealous. It cannot be that the activities of the Xs constitute at one and the same time two lives. Only in certain special cases can two lives overlap.
     From: Peter van Inwagen (Material Beings [1990], 09)
One's mental and other life is centred on the brain, unlike any other part of the body [Inwagen]
     Full Idea: One's life - not simply one's mental life - is centered in the activity of the simples that virtually compose one's brain in a way in which it is not centered in the activity of any of the other simples that compose one.
     From: Peter van Inwagen (Material Beings [1990], 15)
     A reaction: This justifies the common view that 'one follows one's brain'. I take that to mean that my brain embodies my essence. I would read 'centered on' as 'explains'.
The chemical reactions in a human life involve about sixteen elements [Inwagen]
     Full Idea: There are sixteen or so chemical elements involved in those chemical reactions that collectively constitute the life of a human being.
     From: Peter van Inwagen (Material Beings [1990], 09)
Life is vague at both ends, but could it be totally vague? [Inwagen]
     Full Idea: Individual human lives are infected with vagueness at both ends. ...But could there be a 'borderline life'?
     From: Peter van Inwagen (Material Beings [1990], 18)
     A reaction: Van Inwagen says (p.239) that there may be wholly vague lives, though it would suit his case better if there were not.
28. God / B. Proving God / 2. Proofs of Reason / b. Ontological Proof critique
There is no reason to think that mere existence is a valuable thing [Inwagen]
     Full Idea: There is no reason to suppose - whatever Saint Anselm and Descartes may have thought - that mere existence is a valuable thing.
     From: Peter van Inwagen (Material Beings [1990], 12)
     A reaction: This is one of the simplest and most powerful objections to the Ontological Argument. God's existence may be of great value, but the existence of Hitler wasn't.