Combining Texts

All the ideas for 'Natural Goodness', 'De Re Aedificatoria' and 'Understanding the Infinite'

unexpand these ideas     |    start again     |     specify just one area for these texts


48 ideas

1. Philosophy / A. Wisdom / 1. Nature of Wisdom
Wisdom only implies the knowledge achievable in any normal lifetime [Foot]
     Full Idea: Wisdom implies no more knowledge and understanding than anyone of normal capacity can and should acquire in the course of an ordinary life.
     From: Philippa Foot (Natural Goodness [2001], 5)
     A reaction: Have philosophers stopped talking about wisdom precisely because you now need three university degrees to be considered even remotely good at phillosophy? Hence wisdom is an inferior attainment, because Foot is right.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
     Full Idea: Second-order set theory is just like first-order set-theory, except that we use the version of Replacement with a universal second-order quantifier over functions from set to sets.
     From: Shaughan Lavine (Understanding the Infinite [1994], VII.4)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
     Full Idea: A member m of M is an 'upper bound' of a subset N of M if m is not less than any member of N. A member m of M is a 'least upper bound' of N if m is an upper bound of N such that if l is any other upper bound of N, then m is less than l.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
     A reaction: [if you don't follow that, you'll have to keep rereading it till you do]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
     Full Idea: Since combinatorial collections are enumerated, some multiplicities may be too large to be gathered into combinatorial collections. But the size of a multiplicity seems quite irrelevant to whether it forms a logical connection.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.2)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Those who reject infinite collections also want to reject the Axiom of Choice [Lavine]
     Full Idea: Many of those who are skeptical about the existence of infinite combinatorial collections would want to doubt or deny the Axiom of Choice.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.2)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set is just the collection of functions from one collection to another [Lavine]
     Full Idea: The Power Set is just he codification of the fact that the collection of functions from a mathematical collection to a mathematical collection is itself a mathematical collection that can serve as a domain of mathematical study.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.1)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was immediately accepted, despite having very few implications [Lavine]
     Full Idea: The Axiom of Replacement (of Skolem and Fraenkel) was remarkable for its universal acceptance, though it seemed to have no consequences except for the properties of the higher reaches of the Cantorian infinite.
     From: Shaughan Lavine (Understanding the Infinite [1994], I)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation says descending chains are of finite length, blocking circularity, or ungrounded sets [Lavine]
     Full Idea: The Axiom of Foundation (Zermelo 1930) says 'Every (descending) chain in which each element is a member of the previous one is of finite length'. ..This forbids circles of membership, or ungrounded sets. ..The iterative conception gives this centre stage.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
     Full Idea: The controversy was not about Choice per se, but about the correct notion of function - between advocates of taking mathematics to be about arbitrary functions and advocates of taking it to be about functions given by rules.
     From: Shaughan Lavine (Understanding the Infinite [1994], I)
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
     Full Idea: Combinatorial collections (defined just by the members) obviously obey the Axiom of Choice, while it is at best dubious whether logical connections (defined by a rule) do.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.2)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
The 'logical' notion of class has some kind of definition or rule to characterise the class [Lavine]
     Full Idea: The Peano-Russell notion of class is the 'logical' notion, where each collection is associated with some kind of definition or rule that characterises the members of the collection.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.1)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception of set wasn't suggested until 1947 [Lavine]
     Full Idea: The iterative conception of set was not so much as suggested, let alone advocated by anyone, until 1947.
     From: Shaughan Lavine (Understanding the Infinite [1994], I)
The iterative conception needs the Axiom of Infinity, to show how far we can iterate [Lavine]
     Full Idea: The iterative conception of sets does not tell us how far to iterate, and so we must start with an Axiom of Infinity. It also presupposes the notion of 'transfinite iteration'.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.5)
The iterative conception doesn't unify the axioms, and has had little impact on mathematical proofs [Lavine]
     Full Idea: The iterative conception does not provide a conception that unifies the axioms of set theory, ...and it has had very little impact on what theorems can be proved.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.5)
     A reaction: He says he would like to reject the iterative conception, but it may turn out that Foundation enables new proofs in mathematics (though it hasn't so far).
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size: if it's the same size as a set, it's a set; it uses Replacement [Lavine]
     Full Idea: Limitation of Size has it that if a collection is the same size as a set, then it is a set. The Axiom of Replacement is characteristic of limitation of size.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.5)
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A collection is 'well-ordered' if there is a least element, and all of its successors can be identified [Lavine]
     Full Idea: A collection M is 'well-ordered' by a relation < if < linearly orders M with a least element, and every subset of M that has an upper bound not in it has an immediate successor.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic presupposes a set of relations already fixed by the first-order domain [Lavine]
     Full Idea: The distinctive feature of second-order logic is that it presupposes that, given a domain, there is a fact of the matter about what the relations on it are, so that the range of the second-order quantifiers is fixed as soon as the domain is fixed.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.3)
     A reaction: This sounds like a rather large assumption, which is open to challenge. I am not sure whether it was the basis of Quine's challenge to second-order logic. He seems to have disliked its vagueness, because it didn't stick with 'objects'.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Mathematical proof by contradiction needs the law of excluded middle [Lavine]
     Full Idea: The Law of Excluded Middle is (part of) the foundation of the mathematical practice of employing proofs by contradiction.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.1)
     A reaction: This applies in a lot of logic, as well as in mathematics. Come to think of it, it applies in Sudoku.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is nowadays (thanks to set theory) regarded as the study of structure, not of quantity [Lavine]
     Full Idea: Mathematics is today thought of as the study of abstract structure, not the study of quantity. That point of view arose directly out of the development of the set-theoretic notion of abstract structure.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.2)
     A reaction: It sounds as if Structuralism, which is a controversial view in philosophy, is a fait accompli among mathematicians.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Every rational number, unlike every natural number, is divisible by some other number [Lavine]
     Full Idea: One reason to introduce the rational numbers is that it simplifes the theory of division, since every rational number is divisible by every nonzero rational number, while the analogous statement is false for the natural numbers.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.3)
     A reaction: That is, with rations every division operation has an answer.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
For the real numbers to form a set, we need the Continuum Hypothesis to be true [Lavine]
     Full Idea: The chief importance of the Continuum Hypothesis for Cantor (I believe) was that it would show that the real numbers form a set, and hence that they were encompassed by his theory.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.2)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a necessary condition for the convergence of a sequence [Lavine]
     Full Idea: The Cauchy convergence criterion for a sequence: the sequence S0,S1,... has a limit if |S(n+r) - S(n)| is less than any given quantity for every value of r and sufficiently large values of n. He proved this necessary, but not sufficient.
     From: Shaughan Lavine (Understanding the Infinite [1994], 2.5)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
The two sides of the Cut are, roughly, the bounding commensurable ratios [Lavine]
     Full Idea: Roughly speaking, the upper and lower parts of the Dedekind cut correspond to the commensurable ratios greater than and less than a given incommensurable ratio.
     From: Shaughan Lavine (Understanding the Infinite [1994], II.6)
     A reaction: Thus there is the problem of whether the contents of the gap are one unique thing, or many.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Counting results in well-ordering, and well-ordering makes counting possible [Lavine]
     Full Idea: Counting a set produces a well-ordering of it. Conversely, if one has a well-ordering of a set, one can count it by following the well-ordering.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
     A reaction: Cantor didn't mean that you could literally count the set, only in principle.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
The infinite is extrapolation from the experience of indefinitely large size [Lavine]
     Full Idea: My proposal is that the concept of the infinite began with an extrapolation from the experience of indefinitely large size.
     From: Shaughan Lavine (Understanding the Infinite [1994], VIII.2)
     A reaction: I think it might be better to talk of an 'abstraction' than an 'extrapolition', since the latter is just more of the same, which doesn't get you to concept. Lavine spends 100 pages working out his proposal.
The theory of infinity must rest on our inability to distinguish between very large sizes [Lavine]
     Full Idea: The indiscernibility of indefinitely large sizes will be a critical part of the theory of indefinitely large sizes.
     From: Shaughan Lavine (Understanding the Infinite [1994], VIII.2)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
The intuitionist endorses only the potential infinite [Lavine]
     Full Idea: The intuitionist endorse the actual finite, but only the potential infinite.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.2)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
'Aleph-0' is cardinality of the naturals, 'aleph-1' the next cardinal, 'aleph-ω' the ω-th cardinal [Lavine]
     Full Idea: The symbol 'aleph-nought' denotes the cardinal number of the set of natural numbers. The symbol 'aleph-one' denotes the next larger cardinal number. 'Aleph-omega' denotes the omega-th cardinal number.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Ordinals are basic to Cantor's transfinite, to count the sets [Lavine]
     Full Idea: The ordinals are basic because the transfinite sets are those that can be counted, or (equivalently for Cantor), those that can be numbered by an ordinal or are well-ordered.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
     A reaction: Lavine observes (p.55) that for Cantor 'countable' meant 'countable by God'!
Paradox: the class of all ordinals is well-ordered, so must have an ordinal as type - giving a bigger ordinal [Lavine]
     Full Idea: The paradox of the largest ordinal (the 'Burali-Forti') is that the class of all ordinal numbers is apparently well-ordered, and so it has an ordinal number as order type, which must be the largest ordinal - but all ordinals can be increased by one.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.5)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Paradox: there is no largest cardinal, but the class of everything seems to be the largest [Lavine]
     Full Idea: The paradox of the largest cardinal ('Cantor's Paradox') says the diagonal argument shows there is no largest cardinal, but the class of all individuals (including the classes) must be the largest cardinal number.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.5)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory will found all of mathematics - except for the notion of proof [Lavine]
     Full Idea: Every theorem of mathematics has a counterpart with set theory - ...but that theory cannot serve as a basis for the notion of proof.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.3)
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Modern mathematics works up to isomorphism, and doesn't care what things 'really are' [Lavine]
     Full Idea: In modern mathematics virtually all work is only up to isomorphism and no one cares what the numbers or points and lines 'really are'.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.1)
     A reaction: At least that leaves the field open for philosophers, because we do care what things really are. So should everybody else, but there is no persuading some people.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionism rejects set-theory to found mathematics [Lavine]
     Full Idea: Intuitionism in philosophy of mathematics rejects set-theoretic foundations.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.3 n33)
20. Action / C. Motives for Action / 3. Acting on Reason / a. Practical reason
All criterions of practical rationality derive from goodness of will [Foot]
     Full Idea: I want to say, baldly, that there is no criterion for practical rationality that is not derived from that of goodness of will.
     From: Philippa Foot (Natural Goodness [2001], 1)
     A reaction: Where does that put the successful and clever criminal? Presumably they are broadly irrational, but narrowly rational - but that is not very clear distinction. She says Kant's concept of the good will is too pure, and unrelated to human good.
21. Aesthetics / A. Aesthetic Experience / 4. Beauty
The beautiful is that from which nothing can be subtracted and to which nothing can be added [Alberti]
     Full Idea: The beautiful is that from which nothing can be taken away and to which nothing can be added but for the worse.
     From: Leon Battista Alberti (De Re Aedificatoria [1485]), quoted by Roger Scruton - Beauty: a very short introduction 9
     A reaction: Scruton rejects this Platonic tradition of beauty as organic wholeness, because you can't say how it would be 'worse' without invoking beauty, which makes it circular. Scruton appears to be correct.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / b. Rational ethics
Moral reason is not just neutral, because morality is part of the standard of rationality [Foot, by Hacker-Wright]
     Full Idea: In her late period she again reverses her thoughts on moral rationalism; …rather than a neutral rationality which fulfils desires, she argues that morality ought to be thought of as part of the standard of rationality itself.
     From: report of Philippa Foot (Natural Goodness [2001]) by John Hacker-Wright - Philippa Foot's Moral Thought Intro
     A reaction: This comes much closer to the Greek and Aristotelian concept of logos. They saw morality as inseparable from our judgements about how the world is. All 'sensible' thinking will involve what is good for humanity.
Practical rationality must weigh both what is morally and what is non-morally required [Foot]
     Full Idea: Different considerations are on a par, in that judgement about what is required by practical rationality must take account of their interaction: of the weight of the ones we call non-moral as well as those we call moral.
     From: Philippa Foot (Natural Goodness [2001], 1)
     A reaction: Her final settled view of rationalism in morality, it seems. The point is that moral considerations are not paramount, because she sees possible justifications for ignoring moral rules (like 'don't lie') in certain practical situations.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / e. Human nature
Moral virtues arise from human nature, as part of what makes us good human beings [Foot, by Hacker-Wright]
     Full Idea: In her later work she offers a view of the relationship of morality to human nature, arguing that the moral virtues are part of what makes us good as human beings.
     From: report of Philippa Foot (Natural Goodness [2001]) by John Hacker-Wright - Philippa Foot's Moral Thought Intro
     A reaction: In this phase she talks explicitly of the Aristotelian idea that successful function is the grounding of what is good for any living being, including humans.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / k. Ethics from nature
Virtues are as necessary to humans as stings are to bees [Foot]
     Full Idea: Virtues play a necessary part in the life of human beings as do stings in the life of a bee.
     From: Philippa Foot (Natural Goodness [2001], 2)
     A reaction: This presumably rests on the Aristotelian idea that humans are essentially social (as opposed to solitary humans who choose to be social, perhaps in a contractual way, as Plato implies).
Sterility is a human defect, but the choice to be childless is not [Foot]
     Full Idea: Lack of capacity to reproduce is a defect in a human being. But choice of childlessness and even celibacy is not thereby shown to be defective choice, because human good is not the same as plant or animal good.
     From: Philippa Foot (Natural Goodness [2001], 3)
     A reaction: Is failure to reproduce a defect in an animal? If goodness and virtue derive from function, it is hard to see how deliberate childlessness could be a human good, even if it is not a defect. Choosing to terminate a hereditary defect seems good.
22. Metaethics / B. Value / 1. Nature of Value / b. Fact and value
Moral evaluations are not separate from facts, but concern particular facts about functioning [Foot]
     Full Idea: A moral evaluation does not stand over against the statement of a matter of fact, but rather has to do with facts about a particular subject matter, as do evaluations of such things as sight and hearing in animals.
     From: Philippa Foot (Natural Goodness [2001], 1)
     A reaction: She avoids the word 'function', and only deals with living creatures, but she uses a 'good knife' as an example, and this Aristotelian view clearly applies to any machine which has a function.
22. Metaethics / C. The Good / 2. Happiness / a. Nature of happiness
Deep happiness usually comes from the basic things in life [Foot]
     Full Idea: Possible objects of deep happiness seem to be things that are basic in human life, such as home, and family, and work, and friendship.
     From: Philippa Foot (Natural Goodness [2001], 6)
     A reaction: I've not encountered discussion of 'deep' happiness before. I heard of an old man in tears because he had just seen a Purple Emperor butterfly for the first time. She makes it sound very conservative. How about mountaineering achievements?
Happiness is enjoying the pursuit and attainment of right ends [Foot]
     Full Idea: In my terminology 'happiness' is understood as the enjoyment of good things, meaning the enjoyment in attaining, and in pursuing, right ends.
     From: Philippa Foot (Natural Goodness [2001], 6)
     A reaction: A modified version of Aristotle's view, which she contrasts with McDowell's identification of happiness with the life of virtue. They all seem to have an optimistic hope that the pleasure in being a bit wicked is false happiness.
23. Ethics / A. Egoism / 1. Ethical Egoism
Good actions can never be justified by the good they brings to their agent [Foot]
     Full Idea: There is no good case for assessing the goodness of human action by reference only to good that each person brings to himself.
     From: Philippa Foot (Natural Goodness [2001], 1)
     A reaction: She observes that even non-human animals often act for non-selfish reasons. The significance of this is its rejection of her much earlier view that virtues are justified by the good they bring their possessor.
23. Ethics / B. Contract Ethics / 5. Free Rider
We all know that just pretending to be someone's friend is not the good life [Foot]
     Full Idea: We know perfectly well that it is not true that the best life would consist in successfully pretending friendship: having friends to serve one but without being a real friend oneself.
     From: Philippa Foot (Natural Goodness [2001], 7)
     A reaction: For some skallywags the achieving of something for nothing seems to be very much the good life, but not many of them want to exploit people who are seen to be their friends.
23. Ethics / C. Virtue Theory / 2. Elements of Virtue Theory / e. Character
Someone is a good person because of their rational will, not their body or memory [Foot]
     Full Idea: To speak of a good person is to speak of an individual not in respect of his body, or of faculties such as sight and memory, but as concerns his rational will (his 'will as controllable by reason').
     From: Philippa Foot (Natural Goodness [2001], 5)
     A reaction: She more or less agrees with Kant that the only truly good moral thing is a good will, though she has plenty of other criticisms of his views.
23. Ethics / F. Existentialism / 7. Existential Action
Refraining from murder is not made good by authenticity or self-fulfilment [Foot]
     Full Idea: If a stranger should come on us when we are sleeping he will not think it all right to kill us. …In human life as it is, this kind of action is not made good by authenticity or self-fulfilment in the one who does it.
     From: Philippa Foot (Natural Goodness [2001], 7)
     A reaction: A rare swipe from Foot at existentialism, which she hardly ever mentions. I find it hard to see these existential virtues as in any way moral. It means nothing to other citizens whether one of their number is 'authentic'.