Combining Texts

All the ideas for 'poems', 'The Limits of Contingency' and 'Logicism and Ontological Commits. of Arithmetic'

unexpand these ideas     |    start again     |     specify just one area for these texts


22 ideas

3. Truth / F. Semantic Truth / 2. Semantic Truth
Truth in a model is more tractable than the general notion of truth [Hodes]
     Full Idea: Truth in a model is interesting because it provides a transparent and mathematically tractable model - in the 'ordinary' rather than formal sense of the term 'model' - of the less tractable notion of truth.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.131)
     A reaction: This is an important warning to those who wish to build their entire account of truth on Tarski's rigorously formal account of the term. Personally I think we should start by deciding whether 'true' can refer to the mental state of a dog. I say it can.
Truth is quite different in interpreted set theory and in the skeleton of its language [Hodes]
     Full Idea: There is an enormous difference between the truth of sentences in the interpreted language of set theory and truth in some model for the disinterpreted skeleton of that language.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.132)
     A reaction: This is a warning to me, because I thought truth and semantics only entered theories at the stage of 'interpretation'. I must go back and get the hang of 'skeletal' truth, which sounds rather charming. [He refers to set theory, not to logic.]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing (with Extensionality) guarantees an infinity of sets, just from a single element [Rosen]
     Full Idea: In conjunction with Extensionality, Pairing entails that given a single non-set, infinitely many sets exist.
     From: Gideon Rosen (The Limits of Contingency [2006], 04)
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Higher-order logic may be unintelligible, but it isn't set theory [Hodes]
     Full Idea: Brand higher-order logic as unintelligible if you will, but don't conflate it with set theory.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.131)
     A reaction: [he gives Boolos 1975 as a further reference] This is simply a corrective, because the conflation of second-order logic with set theory is an idea floating around in the literature.
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Identity is a level one relation with a second-order definition [Hodes]
     Full Idea: Identity should he considered a logical notion only because it is the tip of a second-order iceberg - a level 1 relation with a pure second-order definition.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984])
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
When an 'interpretation' creates a model based on truth, this doesn't include Fregean 'sense' [Hodes]
     Full Idea: A model is created when a language is 'interpreted', by assigning non-logical terms to objects in a set, according to a 'true-in' relation, but we must bear in mind that this 'interpretation' does not associate anything like Fregean senses with terms.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.131)
     A reaction: This seems like a key point (also made by Hofweber) that formal accounts of numbers, as required by logic, will not give an adequate account of the semantics of number-terms in natural languages.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Mathematics is higher-order modal logic [Hodes]
     Full Idea: I take the view that (agreeing with Aristotle) mathematics only requires the notion of a potential infinity, ...and that mathematics is higher-order modal logic.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984])
     A reaction: Modern 'modal' accounts of mathematics I take to be heirs of 'if-thenism', which seems to have been Russell's development of Frege's original logicism. I'm beginning to think it is right. But what is the subject-matter of arithmetic?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
Arithmetic must allow for the possibility of only a finite total of objects [Hodes]
     Full Idea: Arithmetic should be able to face boldly the dreadful chance that in the actual world there are only finitely many objects.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.148)
     A reaction: This seems to be a basic requirement for any account of arithmetic, but it was famously a difficulty for early logicism, evaded by making the existence of an infinity of objects into an axiom of the system.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
It is claimed that numbers are objects which essentially represent cardinality quantifiers [Hodes]
     Full Idea: The mathematical object-theorist says a number is an object that represents a cardinality quantifier, with the representation relation as the entire essence of the nature of such objects as cardinal numbers like 4.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984])
     A reaction: [compressed] This a classic case of a theory beginning to look dubious once you spell it our precisely. The obvious thought is to make do with the numerical quantifiers, and dispense with the objects. Do other quantifiers need objects to support them?
Numerical terms can't really stand for quantifiers, because that would make them first-level [Hodes]
     Full Idea: The dogmatic Frege is more right than wrong in denying that numerical terms can stand for numerical quantifiers, for there cannot be a language in which object-quantifiers and objects are simultaneously viewed as level zero.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.142)
     A reaction: Subtle. We see why Frege goes on to say that numbers are level zero (i.e. they are objects). We are free, it seems, to rewrite sentences containing number terms to suit whatever logical form appeals. Numbers are just quantifiers?
7. Existence / D. Theories of Reality / 7. Fictionalism
Talk of mirror images is 'encoded fictions' about real facts [Hodes]
     Full Idea: Talk about mirror images is a sort of fictional discourse. Statements 'about' such fictions are not made true or false by our whims; rather they 'encode' facts about the things reflected in mirrors.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.146)
     A reaction: Hodes's proposal for how we should view abstract objects (c.f. Frege and Dummett on 'the equator'). The facts involved are concrete, but Hodes is offering 'encoding fictionalism' as a linguistic account of such abstractions. He applies it to numbers.
9. Objects / A. Existence of Objects / 4. Impossible objects
A Meinongian principle might say that there is an object for any modest class of properties [Rosen]
     Full Idea: Meinongian abstraction principles say that for any (suitably restricted) class of properties, there exists an abstract entity (arbitrary object, subsistent entity) that possesses just those properties.
     From: Gideon Rosen (The Limits of Contingency [2006], 04)
     A reaction: This is 'Meinongian' because there will be an object which is circular and square. The nub of the idea presumably resides in what is meant by 'restricted'. An object possessing every conceivable property is, I guess, a step too far.
10. Modality / A. Necessity / 5. Metaphysical Necessity
Metaphysical necessity is absolute and universal; metaphysical possibility is very tolerant [Rosen]
     Full Idea: If P is metaphysically necessary, then it is absolutely necessary, and necessary in every real (non-epistemic) sense; and if P is possible in any sense, then it's possible in the metaphysical sense.
     From: Gideon Rosen (The Limits of Contingency [2006], 02)
     A reaction: Rosen's shot at defining metaphysical necessity and possibility, and it looks pretty good to me. In my terms (drawing from Kit Fine) it is what is necessitated or permitted 'by everything'. So if it is necessitated by logic or nature, that's included.
'Metaphysical' modality is the one that makes the necessity or contingency of laws of nature interesting [Rosen]
     Full Idea: 'Metaphysical' modality is the sort of modality relative to which it is an interesting question whether the laws of nature are necessary or contingent.
     From: Gideon Rosen (The Limits of Contingency [2006], 02)
     A reaction: Being an essentialist here, I take it that the stuff of the universe necessitates the so-called 'laws'. The metaphysically interesting question is whether the stuff might have been different. Search me! A nice test of metaphysical modality though.
Sets, universals and aggregates may be metaphysically necessary in one sense, but not another [Rosen]
     Full Idea: It may be metaphysically necessary in one sense that sets or universals or mereological aggregates exist, while in another sense existence is always a contingent matter.
     From: Gideon Rosen (The Limits of Contingency [2006], 10)
     A reaction: This idea depends on Idea 18856 and 18857. Personally I only think mereological aggregates and sets exist when people decide that they exist, so I don't see how they could ever be necessary. I'm unconvinced about his two concepts.
Standard Metaphysical Necessity: P holds wherever the actual form of the world holds [Rosen]
     Full Idea: According to the Standard Conception of Metaphysical Necessity, P is metaphysically necessary when it holds in every possible world in which the laws of metaphysics (about the form or structure of the actual world) hold
     From: Gideon Rosen (The Limits of Contingency [2006], 10)
     A reaction: Rosen has a second meaning, in Idea 18856. He thinks it is crucial to see that there are two senses, because many things come out as metaphysically necessary on one concept, but contingent on the other. Interesting....
Non-Standard Metaphysical Necessity: when ¬P is incompatible with the nature of things [Rosen]
     Full Idea: According to the Non-Standard conception of Metaphysical Necessity, P is metaphysically necessary when its negation is logically incompatible with the nature of things.
     From: Gideon Rosen (The Limits of Contingency [2006], 10)
     A reaction: Rosen's new second meaning of the term. My immediate problem is with it resting on being 'logically' incompatible. Are squares 'logically' incompatible with circles? I like the idea that it rests on 'the nature of things'. (Psst! natures = essences)
10. Modality / A. Necessity / 6. Logical Necessity
Something may be necessary because of logic, but is that therefore a special sort of necessity? [Rosen]
     Full Idea: It is one thing to say that P is necessary in some generic sense because it is a truth of logic (true in all models of a language, perhaps). It is something else to say that P therefore enjoys a special sort of necessity.
     From: Gideon Rosen (The Limits of Contingency [2006], 02)
     A reaction: This encourages my thought that there is only one sort of necessity (what must be), and the variety comes from the different types of necessity makers (everything there could be, nature, duties, promises, logics, concepts...).
10. Modality / B. Possibility / 3. Combinatorial possibility
Combinatorial theories of possibility assume the principles of combination don't change across worlds [Rosen]
     Full Idea: Combinatorial theories of possibility take it for granted ....that possible worlds in general share a syntax, as it were, differing only in the constituents from which they are generated, or in the particular manner of their arrangements.
     From: Gideon Rosen (The Limits of Contingency [2006], 08)
     A reaction: For instance, it might assume that every world has 'objects', to which 'properties' and 'relations' can be attached, or to which 'functions' can apply.
10. Modality / D. Knowledge of Modality / 4. Conceivable as Possible / a. Conceivable as possible
A proposition is 'correctly' conceivable if an ominiscient being could conceive it [Rosen]
     Full Idea: To a first approximation, P is correctly conceivable iff it would be conceivable for a logically ominiscient being who was fully informed about the nature of things.
     From: Gideon Rosen (The Limits of Contingency [2006], 05)
     A reaction: Isn't the last bit covered by 'ominiscient'? Ah, I think the 'logically' only means they have a perfect grasp of what is consistent. This is to meet the standard problem, of ill-informed people 'conceiving' of things which are actually impossible.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / j. Ethics by convention
Nomos is king [Pindar]
     Full Idea: Nomos is king.
     From: Pindar (poems [c.478 BCE], S 169), quoted by Thomas Nagel - The Philosophical Culture
     A reaction: This seems to be the earliest recorded shot in the nomos-physis wars (the debate among sophists about moral relativism). It sounds as if it carries the full relativist burden - that all that matters is what has been locally decreed.
26. Natural Theory / D. Laws of Nature / 4. Regularities / b. Best system theory
The MRL view says laws are the theorems of the simplest and strongest account of the world [Rosen]
     Full Idea: According to the Mill-Ramsey-Lewis account of the laws of nature, a generalisation is a law just in case it is a theorem of every true account of the actual world that achieves the best overall balance of simplicity and strength.
     From: Gideon Rosen (The Limits of Contingency [2006], 08)
     A reaction: The obvious objection is that many of the theorems will be utterly trivial, and that is one thing that the laws of nature are not. Unless you are including 'metaphysical laws' about very very fundamental things, like objects, properties, relations.