Combining Texts

All the ideas for 'works', 'Philosophy of Mathematics' and 'What's Wrong with Rape?'

unexpand these ideas     |    start again     |     specify just one area for these texts


82 ideas

1. Philosophy / A. Wisdom / 1. Nature of Wisdom
For Plato true wisdom is supernatural [Plato, by Weil]
     Full Idea: It is evident that Plato regards true wisdom as something supernatural.
     From: report of Plato (works [c.375 BCE]) by Simone Weil - God in Plato p.61
     A reaction: Taken literally, I assume this is wrong, but we can empathise with the thought. Wisdom has the feeling of rising above the level of mere knowledge, to achieve the overview I associate with philosophy.
1. Philosophy / C. History of Philosophy / 2. Ancient Philosophy / b. Pre-Socratic philosophy
Plato never mentions Democritus, and wished to burn his books [Plato, by Diog. Laertius]
     Full Idea: Plato, who mentions nearly all the ancient philosophers, nowhere speaks of Democritus; he wished to burn all of his books, but was persuaded that it was futile.
     From: report of Plato (works [c.375 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.7.8
2. Reason / C. Styles of Reason / 1. Dialectic
Two contradictories force us to find a relation which will correlate them [Plato, by Weil]
     Full Idea: Where contradictions appear there is a correlation of contraries, which is relation. If a contradiction is imposed on the intelligence, it is forced to think of a relation to transform the contradiction into a correlation, which draws the soul higher.
     From: report of Plato (works [c.375 BCE]) by Simone Weil - God in Plato p.70
     A reaction: A much better account of the dialectic than anything I have yet seen in Hegel. For the first time I see some sense in it. A contradiction is not a falsehood, and it must be addressed rather than side-stepped. A kink in the system, that needs ironing.
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions are wrong, because they change the set that is being defined? [Bostock]
     Full Idea: Poincaré suggested that what is wrong with an impredicative definition is that it allows the set defined to alter its composition as more sets are added to the theory.
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Classical interdefinitions of logical constants and quantifiers is impossible in intuitionism [Bostock]
     Full Idea: None of the classical ways of defining one logical constant in terms of others is available in intuitionist logic (and this includes the two quantifiers).
     From: David Bostock (Philosophy of Mathematics [2009], 7.2)
4. Formal Logic / F. Set Theory ST / 1. Set Theory
There is no single agreed structure for set theory [Bostock]
     Full Idea: There is so far no agreed set of axioms for set theory which is categorical, i.e. which does pick just one structure.
     From: David Bostock (Philosophy of Mathematics [2009], 6.4)
     A reaction: This contrasts with Peano Arithmetic, which is categorical in its second-order version.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
A 'proper class' cannot be a member of anything [Bostock]
     Full Idea: A 'proper class' cannot be a member of anything, neither of a set nor of another proper class.
     From: David Bostock (Philosophy of Mathematics [2009], 5.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
We could add axioms to make sets either as small or as large as possible [Bostock]
     Full Idea: We could add the axiom that all sets are constructible (V = L), making the universe of sets as small as possible, or add the axiom that there is a supercompact cardinal (SC), making the universe as large as we no know how to.
     From: David Bostock (Philosophy of Mathematics [2009], 6.4)
     A reaction: Bostock says most mathematicians reject the first option, and are undecided about the second option.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice relies on reference to sets that we are unable to describe [Bostock]
     Full Idea: The usual accounts of ZF are not restricted to subsets that we can describe, and that is what justifies the axiom of choice.
     From: David Bostock (Philosophy of Mathematics [2009], 8.4 n36)
     A reaction: This contrasts interestingly with predicativism, which says we can only discuss things which we can describe or define. Something like verificationism hovers in the background.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Replacement enforces a 'limitation of size' test for the existence of sets [Bostock]
     Full Idea: The Axiom of Replacement (or the Axiom of Subsets, 'Aussonderung', Fraenkel 1922) in effect enforces the idea that 'limitation of size' is a crucial factor when deciding whether a proposed set or does not not exist.
     From: David Bostock (Philosophy of Mathematics [2009], 5.4)
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is not decidable: there is no test of whether any formula is valid [Bostock]
     Full Idea: First-order logic is not decidable. That is, there is no test which can be applied to any arbitrary formula of that logic and which will tell one whether the formula is or is not valid (as proved by Church in 1936).
     From: David Bostock (Philosophy of Mathematics [2009], 5.5)
The completeness of first-order logic implies its compactness [Bostock]
     Full Idea: From the fact that the usual rules for first-level logic are complete (as proved by Gödel 1930), it follows that this logic is 'compact'.
     From: David Bostock (Philosophy of Mathematics [2009], 5.5)
     A reaction: The point is that the completeness requires finite proofs.
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
Substitutional quantification is just standard if all objects in the domain have a name [Bostock]
     Full Idea: Substitutional quantification and quantification understood in the usual 'ontological' way will coincide when every object in the (ontological) domain has a name.
     From: David Bostock (Philosophy of Mathematics [2009], 7.3 n23)
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
The Deduction Theorem is what licenses a system of natural deduction [Bostock]
     Full Idea: The Deduction Theorem is what licenses a system of 'natural deduction' in the first place.
     From: David Bostock (Philosophy of Mathematics [2009], 7.2)
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox considers the meaning of 'The least number not named by this name' [Bostock]
     Full Idea: Berry's Paradox can be put in this form, by considering the alleged name 'The least number not named by this name'.
     From: David Bostock (Philosophy of Mathematics [2009], 8.1)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Each addition changes the ordinality but not the cardinality, prior to aleph-1 [Bostock]
     Full Idea: If you add to the ordinals you produce many different ordinals, each measuring the length of the sequence of ordinals less than it. They each have cardinality aleph-0. The cardinality eventually increases, but we can't say where this break comes.
     From: David Bostock (Philosophy of Mathematics [2009], 4.5)
ω + 1 is a new ordinal, but its cardinality is unchanged [Bostock]
     Full Idea: If we add ω onto the end of 0,1,2,3,4..., it then has a different length, of ω+1. It has a different ordinal (since it can't be matched with its first part), but the same cardinal (since adding 1 makes no difference).
     From: David Bostock (Philosophy of Mathematics [2009], 4.5)
     A reaction: [compressed] The ordinals and cardinals coincide up to ω, but this is the point at which they come apart.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
A cardinal is the earliest ordinal that has that number of predecessors [Bostock]
     Full Idea: It is the usual procedure these days to identify a cardinal number with the earliest ordinal number that has that number of predecessors.
     From: David Bostock (Philosophy of Mathematics [2009], 4.5)
     A reaction: This sounds circular, since you need to know the cardinal in order to decide which ordinal is the one you want, but, hey, what do I know?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
Aleph-1 is the first ordinal that exceeds aleph-0 [Bostock]
     Full Idea: The cardinal aleph-1 is identified with the first ordinal to have more than aleph-0 members, and so on.
     From: David Bostock (Philosophy of Mathematics [2009], 5.4)
     A reaction: That is, the succeeding infinite ordinals all have the same cardinal number of members (aleph-0), until the new total is triggered (at the number of the reals). This is Continuum Hypothesis territory.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Instead of by cuts or series convergence, real numbers could be defined by axioms [Bostock]
     Full Idea: In addition to cuts, or converging series, Cantor suggests we can simply lay down a set of axioms for the real numbers, and this can be done without any explicit mention of the rational numbers [note: the axioms are those for a complete ordered field].
     From: David Bostock (Philosophy of Mathematics [2009], 4.4)
     A reaction: It is interesting when axioms are best, and when not. Set theory depends entirely on axioms. Horsten and Halbach are now exploring treating truth as axiomatic. You don't give the 'nature' of the thing - just rules for its operation.
The number of reals is the number of subsets of the natural numbers [Bostock]
     Full Idea: It is not difficult to show that the number of the real numbers is the same as the number of all the subsets of the natural numbers.
     From: David Bostock (Philosophy of Mathematics [2009], 4.5)
     A reaction: The Continuum Hypothesis is that this is the next infinite number after the number of natural numbers. Why can't there be a number which is 'most' of the subsets of the natural numbers?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
For Eudoxus cuts in rationals are unique, but not every cut makes a real number [Bostock]
     Full Idea: As Eudoxus claimed, two distinct real numbers cannot both make the same cut in the rationals, for any two real numbers must be separated by a rational number. He did not say, though, that for every such cut there is a real number that makes it.
     From: David Bostock (Philosophy of Mathematics [2009], 4.4)
     A reaction: This is in Bostock's discussion of Dedekind's cuts. It seems that every cut is guaranteed to produce a real. Fine challenges the later assumption.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
Infinitesimals are not actually contradictory, because they can be non-standard real numbers [Bostock]
     Full Idea: Non-standard natural numbers will yield non-standard rational and real numbers. These will include reciprocals which will be closer to 0 than any standard real number. These are like 'infinitesimals', so that notion is not actually a contradiction.
     From: David Bostock (Philosophy of Mathematics [2009], 5.5)
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Modern axioms of geometry do not need the real numbers [Bostock]
     Full Idea: A modern axiomatisation of geometry, such as Hilbert's (1899), does not need to claim the existence of real numbers anywhere in its axioms.
     From: David Bostock (Philosophy of Mathematics [2009], 9.B.5.ii)
     A reaction: This is despite the fact that geometry is reduced to algebra, and the real numbers are the equivalent of continuous lines. Bostock votes for a Greek theory of proportion in this role.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
The Peano Axioms describe a unique structure [Bostock]
     Full Idea: The Peano Axioms are categorical, meaning that they describe a unique structure.
     From: David Bostock (Philosophy of Mathematics [2009], 4.4 n20)
     A reaction: So if you think there is nothing more to the natural numbers than their structure, then the Peano Axioms give the essence of arithmetic. If you think that 'objects' must exist to generate a structure, there must be more to the numbers.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Hume's Principle is a definition with existential claims, and won't explain numbers [Bostock]
     Full Idea: Hume's Principle will not do as an implicit definition because it makes a positive claim about the size of the universe (which no mere definition can do), and because it does not by itself explain what the numbers are.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
Many things will satisfy Hume's Principle, so there are many interpretations of it [Bostock]
     Full Idea: Hume's Principle gives a criterion of identity for numbers, but it is obvious that many other things satisfy that criterion. The simplest example is probably the numerals (in any notation, decimal, binary etc.), giving many different interpretations.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
There are many criteria for the identity of numbers [Bostock]
     Full Idea: There is not just one way of giving a criterion of identity for numbers.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Frege makes numbers sets to solve the Caesar problem, but maybe Caesar is a set! [Bostock]
     Full Idea: The Julius Caesar problem was one reason that led Frege to give an explicit definition of numbers as special sets. He does not appear to notice that the same problem affects his Axiom V for introducing sets (whether Caesar is or is not a set).
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
     A reaction: The Julius Caesar problem is a sceptical acid that eats into everything in philosophy of mathematics. You give all sorts of wonderful accounts of numbers, but at what point do you know that you now have a number, and not something else?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Numbers can't be positions, if nothing decides what position a given number has [Bostock]
     Full Idea: There is no ground for saying that a number IS a position, if the truth is that there is nothing to determine which number is which position.
     From: David Bostock (Philosophy of Mathematics [2009], 6.4)
     A reaction: If numbers lose touch with the empirical ability to count physical objects, they drift off into a mad world where they crumble away.
Structuralism falsely assumes relations to other numbers are numbers' only properties [Bostock]
     Full Idea: Structuralism begins from a false premise, namely that numbers have no properties other than their relations to other numbers.
     From: David Bostock (Philosophy of Mathematics [2009], 6.5)
     A reaction: Well said. Describing anything purely relationally strikes me as doomed, because you have to say why those things relate in those ways.
6. Mathematics / C. Sources of Mathematics / 3. Mathematical Nominalism
Nominalism about mathematics is either reductionist, or fictionalist [Bostock]
     Full Idea: Nominalism has two main versions, one which tries to 'reduce' the objects of mathematics to something simpler (Russell and Wittgenstein), and another which claims that such objects are mere 'fictions' which have no reality (Field).
     From: David Bostock (Philosophy of Mathematics [2009], 9)
Nominalism as based on application of numbers is no good, because there are too many applications [Bostock]
     Full Idea: The style of nominalism which aims to reduce statements about numbers to statements about their applications does not work for the natural numbers, because they have many applications, and it is arbitrary to choose just one of them.
     From: David Bostock (Philosophy of Mathematics [2009], 9.B.5.iii)
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Actual measurement could never require the precision of the real numbers [Bostock]
     Full Idea: We all know that in practice no physical measurement can be 100 per cent accurate, and so it cannot require the existence of a genuinely irrational number, rather than some of the rational numbers close to it.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.3)
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Ordinals are mainly used adjectively, as in 'the first', 'the second'... [Bostock]
     Full Idea: The basic use of the ordinal numbers is their use as ordinal adjectives, in phrases such as 'the first', 'the second' and so on.
     From: David Bostock (Philosophy of Mathematics [2009], 9.5.iii)
     A reaction: That is because ordinals seem to attach to particulars, whereas cardinals seem to attach to groups. Then you say 'three is greater than four', it is not clear which type you are talking about.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Simple type theory has 'levels', but ramified type theory has 'orders' [Bostock]
     Full Idea: The simple theory of types distinguishes sets into different 'levels', but this is quite different from the distinction into 'orders' which is imposed by the ramified theory.
     From: David Bostock (Philosophy of Mathematics [2009], 8.1)
     A reaction: The ramified theory has both levels and orders (p.235). Russell's terminology is, apparently, inconsistent.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Neo-logicists agree that HP introduces number, but also claim that it suffices for the job [Bostock]
     Full Idea: The neo-logicists take up Frege's claim that Hume's Principle introduces a new concept (of a number), but unlike Frege they go on to claim that it by itself gives a complete account of that concept.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
     A reaction: So the big difference between Frege and neo-logicists is the Julius Caesar problem.
Neo-logicists meet the Caesar problem by saying Hume's Principle is unique to number [Bostock]
     Full Idea: The response of neo-logicists to the Julius Caesar problem is to strengthen Hume's Principle in the hope of ensuring that only numbers will satisfy it. They say the criterion of identity provided by HP is essential to number, and not to anything else.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Many crucial logicist definitions are in fact impredicative [Bostock]
     Full Idea: Many of the crucial definitions in the logicist programme are in fact impredicative.
     From: David Bostock (Philosophy of Mathematics [2009], 8.2)
Treating numbers as objects doesn't seem like logic, since arithmetic fixes their totality [Bostock]
     Full Idea: If logic is neutral on the number of objects there are, then logicists can't construe numbers as objects, for arithmetic is certainly not neutral on the number of numbers there are. They must be treated in some other way, perhaps as numerical quantifiers.
     From: David Bostock (Philosophy of Mathematics [2009], 5.5)
If Hume's Principle is the whole story, that implies structuralism [Bostock]
     Full Idea: If Hume's Principle is all we are given, by way of explanation of what the numbers are, the only conclusion to draw would seem to be the structuralists' conclusion, ...studying all systems that satisfy that principle.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
     A reaction: Any approach that implies a set of matching interpretations will always imply structuralism. To avoid it, you need to pin the target down uniquely.
6. Mathematics / C. Sources of Mathematics / 9. Fictional Mathematics
Higher cardinalities in sets are just fairy stories [Bostock]
     Full Idea: In its higher reaches, which posit sets of huge cardinalities, set theory is just a fairy story.
     From: David Bostock (Philosophy of Mathematics [2009], 9.5.iii)
     A reaction: You can't say the higher reaches are fairy stories but the lower reaches aren't, if the higher is directly derived from the lower. The empty set and the singleton are fairy stories too. Bostock says the axiom of infinity triggers the fairy stories.
A fairy tale may give predictions, but only a true theory can give explanations [Bostock]
     Full Idea: A common view is that although a fairy tale may provide very useful predictions, it cannot provide explanations for why things happen as they do. In order to do that a theory must also be true (or, at least, an approximation to the truth).
     From: David Bostock (Philosophy of Mathematics [2009], 9.B.5)
     A reaction: Of course, fictionalism offers an explanation of mathematics as a whole, but not of the details (except as the implications of the initial fictional assumptions).
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
The best version of conceptualism is predicativism [Bostock]
     Full Idea: In my personal opinion, predicativism is the best version of conceptualism that we have yet discovered.
     From: David Bostock (Philosophy of Mathematics [2009], 8.4)
     A reaction: Since conceptualism is a major player in the field, this makes predicativism a very important view. I won't vote Predicativist quite yet, but I'm tempted.
Conceptualism fails to grasp mathematical properties, infinity, and objective truth values [Bostock]
     Full Idea: Three simple objections to conceptualism in mathematics are that we do not ascribe mathematical properties to our ideas, that our ideas are presumably finite, and we don't think mathematics lacks truthvalue before we thought of it.
     From: David Bostock (Philosophy of Mathematics [2009], 8.4)
     A reaction: [compressed; Bostock refers back to his Ch 2] Plus Idea 18134. On the whole I sympathise with conceptualism, so I will not allow myself to be impressed by any of these objections. (So, what's actually wrong with them.....?).
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
If abstracta only exist if they are expressible, there can only be denumerably many of them [Bostock]
     Full Idea: If an abstract object exists only when there is some suitable way of expressing it, then there are at most denumerably many abstract objects.
     From: David Bostock (Philosophy of Mathematics [2009], 8.2)
     A reaction: Fine by me. What an odd view, to think there are uncountably many abstract objects in existence, only a countable portion of which will ever be expressed! [ah! most people agree with me, p.243-4]
Predicativism makes theories of huge cardinals impossible [Bostock]
     Full Idea: Classical mathematicians say predicative mathematics omits areas of great interest, all concerning non-denumerable real numbers, such as claims about huge cardinals. There cannot be a predicative version of this theory.
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
     A reaction: I'm not sure that anyone will really miss huge cardinals if they are prohibited, though cryptography seems to flirt with such things. Are we ever allowed to say that some entity conjured up by mathematicians is actually impossible?
If mathematics rests on science, predicativism may be the best approach [Bostock]
     Full Idea: It has been claimed that only predicative mathematics has a justification through its usefulness to science (an empiricist approach).
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
     A reaction: [compressed. Quine is the obvious candidate] I suppose predicativism gives your theory roots, whereas impredicativism is playing an abstract game.
If we can only think of what we can describe, predicativism may be implied [Bostock]
     Full Idea: If we accept the initial idea that we can think only of what we ourselves can describe, then something like the theory of predicativism quite naturally results
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
     A reaction: I hate the idea that we can only talk of what falls under a sortal, but 'what we can describe' is much more plausible. Whether or not you agree with this approach (I'm pondering it), this makes predicativism important.
The usual definitions of identity and of natural numbers are impredicative [Bostock]
     Full Idea: The predicative approach cannot accept either the usual definition of identity or the usual definition of the natural numbers, for both of these definitions are impredicative.
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
     A reaction: [Bostock 237-8 gives details]
The predicativity restriction makes a difference with the real numbers [Bostock]
     Full Idea: It is with the real numbers that the restrictions imposed by predicativity begin to make a real difference.
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
8. Modes of Existence / A. Relations / 3. Structural Relations
Plato's idea of 'structure' tends to be mathematically expressed [Plato, by Koslicki]
     Full Idea: 'Structure' tends to be characterized by Plato as something that is mathematically expressed.
     From: report of Plato (works [c.375 BCE]) by Kathrin Koslicki - The Structure of Objects V.3 iv
     A reaction: [Koslicki is drawing on Verity Harte here]
8. Modes of Existence / D. Universals / 6. Platonic Forms / a. Platonic Forms
Plato's Forms meant that the sophists only taught the appearance of wisdom and virtue [Plato, by Nehamas]
     Full Idea: Plato's theory of Forms allowed him to claim that the sophists and other opponents were trapped in the world of appearance. What they therefore taught was only apparent wisdom and virtue.
     From: report of Plato (works [c.375 BCE]) by Alexander Nehamas - Eristic,Antilogic,Sophistic,Dialectic p.118
Platonists argue for the indivisible triangle-in-itself [Plato, by Aristotle]
     Full Idea: The Platonists, on the basis of purely logical arguments, posit the existence of an indivisible 'triangle in itself'.
     From: report of Plato (works [c.375 BCE]) by Aristotle - Coming-to-be and Passing-away (Gen/Corr) 316a15
     A reaction: A helpful confirmation that geometrical figures really are among the Forms (bearing in mind that numbers are not, because they contain one another). What shape is the Form of the triangle?
When Diogenes said he could only see objects but not their forms, Plato said it was because he had eyes but no intellect [Plato, by Diog. Laertius]
     Full Idea: When Diogenes told Plato he saw tables and cups, but not 'tableness' and 'cupness', Plato replied that this was because Diogenes had eyes but no intellect.
     From: report of Plato (works [c.375 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 06.2.6
8. Modes of Existence / D. Universals / 6. Platonic Forms / b. Partaking
If there is one Form for both the Form and its participants, they must have something in common [Aristotle on Plato]
     Full Idea: If there is the same Form for the Forms and for their participants, then they must have something in common.
     From: comment on Plato (works [c.375 BCE]) by Aristotle - Metaphysics 991a
8. Modes of Existence / D. Universals / 6. Platonic Forms / c. Self-predication
If gods are like men, they are just eternal men; similarly, Forms must differ from particulars [Aristotle on Plato]
     Full Idea: We say there is the form of man, horse and health, but nothing else, making the same mistake as those who say that there are gods but that they are in the form of men. They just posit eternal men, and here we are not positing forms but eternal sensibles.
     From: comment on Plato (works [c.375 BCE]) by Aristotle - Metaphysics 997b
8. Modes of Existence / D. Universals / 6. Platonic Forms / d. Forms critiques
A Form is a cause of things only in the way that white mixed with white is a cause [Aristotle on Plato]
     Full Idea: A Form is a cause of things only in the way that white mixed with white is a cause.
     From: comment on Plato (works [c.375 BCE]) by Aristotle - Metaphysics 991a
The Forms cannot be changeless if they are in changing things [Aristotle on Plato]
     Full Idea: The Forms could not be changeless if they were in changing things.
     From: comment on Plato (works [c.375 BCE]) by Aristotle - Metaphysics 998a
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
The greatest discovery in human thought is Plato's discovery of abstract objects [Brown,JR on Plato]
     Full Idea: The greatest discovery in the history of human thought is Plato's discovery of abstract objects.
     From: comment on Plato (works [c.375 BCE]) by James Robert Brown - Philosophy of Mathematics Ch. 2
     A reaction: Compare Idea 2860! Given the diametrically opposed views, it is clearly likely that Plato's central view is the most important idea in the history of human thought, even if it is wrong.
9. Objects / A. Existence of Objects / 5. Individuation / a. Individuation
We can grasp whole things in science, because they have a mathematics and a teleology [Plato, by Koslicki]
     Full Idea: Due to the mathematical nature of structure and the teleological cause underlying the creation of Platonic wholes, these wholes are intelligible, and are in fact the proper objects of science.
     From: report of Plato (works [c.375 BCE]) by Kathrin Koslicki - The Structure of Objects 5.3
     A reaction: I like this idea, because it pays attention to the connection between how we conceive objects to be, and how we are able to think about objects. Only examining these two together enables us to grasp metaphysics.
9. Objects / B. Unity of Objects / 1. Unifying an Object / a. Intrinsic unification
Plato sees an object's structure as expressible in mathematics [Plato, by Koslicki]
     Full Idea: The 'structure' of an object tends to be characterised by Plato as something that is mathematically expressible.
     From: report of Plato (works [c.375 BCE]) by Kathrin Koslicki - The Structure of Objects 5.3
     A reaction: This seems to be pure Pythagoreanism (see Idea 644). Plato is pursuing Pythagoras's research programme, of trying to find mathematics buried in every aspect of reality.
Plato was less concerned than Aristotle with the source of unity in a complex object [Plato, by Koslicki]
     Full Idea: Plato was less concerned than Aristotle with the project of how to account, in completely general terms, for the source of unity within a mereologically complex object.
     From: report of Plato (works [c.375 BCE]) by Kathrin Koslicki - The Structure of Objects 5.5
     A reaction: Plato seems to have simply asserted that some sort of harmony held things together. Aristotles puts the forms [eidos] within objects, rather than external, so he has to give a fuller account of what is going on in an object. He never managed it!
9. Objects / B. Unity of Objects / 2. Substance / c. Types of substance
Plato's holds that there are three substances: Forms, mathematical entities, and perceptible bodies [Plato, by Aristotle]
     Full Idea: Plato's doctrine was that the Forms and mathematicals are two substances and that the third substance is that of perceptible bodies.
     From: report of Plato (works [c.375 BCE]) by Aristotle - Metaphysics 1028b
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
Plato says wholes are either containers, or they're atomic, or they don't exist [Plato, by Koslicki]
     Full Idea: Plato considers a 'container' model for wholes (which are disjoint from their parts) [Parm 144e3-], and a 'nihilist' model, in which only wholes are mereological atoms, and a 'bare pluralities' view, in which wholes are not really one at all.
     From: report of Plato (works [c.375 BCE]) by Kathrin Koslicki - The Structure of Objects 5.2
     A reaction: [She cites Verity Harte for this analysis of Plato] The fourth, and best, seems to be that wholes are parts which fall under some unifying force or structure or principle.
9. Objects / D. Essence of Objects / 2. Types of Essence
Only universals have essence [Plato, by Politis]
     Full Idea: Plato argues that only universals have essence.
     From: report of Plato (works [c.375 BCE]) by Vassilis Politis - Aristotle and the Metaphysics 1.4
9. Objects / D. Essence of Objects / 6. Essence as Unifier
Plato and Aristotle take essence to make a thing what it is [Plato, by Politis]
     Full Idea: Plato and Aristotle have a shared general conception of essence: the essence of a thing is what that thing is simply in virtue of itself and in virtue of being the very thing it is. It answers the question 'What is this very thing?'
     From: report of Plato (works [c.375 BCE]) by Vassilis Politis - Aristotle and the Metaphysics 1.4
14. Science / D. Explanation / 1. Explanation / b. Aims of explanation
A good explanation totally rules out the opposite explanation (so Forms are required) [Plato, by Ruben]
     Full Idea: For Plato, an acceptable explanation is one such that there is no possibility of there being the opposite explanation at all, and he thought that only explanations in terms of the Forms, but never physical explanations, could meet this requirement.
     From: report of Plato (works [c.375 BCE]) by David-Hillel Ruben - Explaining Explanation Ch 2
     A reaction: [Republic 436c is cited]
18. Thought / A. Modes of Thought / 3. Emotions / g. Controlling emotions
Plato wanted to somehow control and purify the passions [Vlastos on Plato]
     Full Idea: Plato put high on his agenda a project which did not figure in Socrates' programme at all: the hygienic conditioning of the passions. This cannot be an intellectual process, as argument cannot touch them.
     From: comment on Plato (works [c.375 BCE]) by Gregory Vlastos - Socrates: Ironist and Moral Philosopher p.88
     A reaction: This is the standard traditional view of any thinker who exaggerates the importance and potential of reason in our lives.
19. Language / F. Communication / 1. Rhetoric
Plato's whole philosophy may be based on being duped by reification - a figure of speech [Benardete,JA on Plato]
     Full Idea: Plato is liable to the charge of having been duped by a figure of speech, albeit the most profound of all, the trope of reification.
     From: comment on Plato (works [c.375 BCE]) by José A. Benardete - Metaphysics: the logical approach Ch.12
     A reaction: That might be a plausible account if his view was ridiculous, but given how many powerful friends Plato has, especially in the philosophy of mathematics, we should assume he was cleverer than that.
19. Language / F. Communication / 2. Assertion
In logic a proposition means the same when it is and when it is not asserted [Bostock]
     Full Idea: In Modus Ponens where the first premise is 'P' and the second 'P→Q', in the first premise P is asserted but in the second it is not. Yet it must mean the same in both premises, or it would be guilty of the fallacy of equivocation.
     From: David Bostock (Philosophy of Mathematics [2009], 7.2)
     A reaction: This is Geach's thought (leading to an objection to expressivism in ethics, that P means the same even if it is not expressed).
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / c. Ethical intuitionism
Plato never refers to examining the conscience [Plato, by Foucault]
     Full Idea: Plato never speaks of the examination of conscience - never!
     From: report of Plato (works [c.375 BCE]) by Michel Foucault - On the Genealogy of Ethics p.276
     A reaction: Plato does imply some sort of self-evident direct knowledge about that nature of a healthy soul. Presumably the full-blown concept of conscience is something given from outside, from God. In 'Euthyphro', Plato asserts the primacy of morality (Idea 337).
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / j. Ethics by convention
As religion and convention collapsed, Plato sought morals not just in knowledge, but in the soul [Williams,B on Plato]
     Full Idea: Once gods and fate and social expectation were no longer there, Plato felt it necessary to discover ethics inside human nature, not just as ethical knowledge (Socrates' view), but in the structure of the soul.
     From: comment on Plato (works [c.375 BCE]) by Bernard Williams - Shame and Necessity II - p.43
     A reaction: anti Charles Taylor
22. Metaethics / C. The Good / 1. Goodness / b. Types of good
Plato's legacy to European thought was the Good, the Beautiful and the True [Plato, by Gray]
     Full Idea: Plato's legacy to European thought was a trio of capital letters - the Good, the Beautiful and the True.
     From: report of Plato (works [c.375 BCE]) by John Gray - Straw Dogs 2.8
     A reaction: It seems to have been Baumgarten who turned this into a slogan (Idea 8117). Gray says these ideals are lethal, but I identify with them very strongly, and am quite happy to see the good life as an attempt to find the right balance between them.
22. Metaethics / C. The Good / 1. Goodness / f. Good as pleasure
Pleasure is better with the addition of intelligence, so pleasure is not the good [Plato, by Aristotle]
     Full Idea: Plato says the life of pleasure is more desirable with the addition of intelligence, and if the combination is better, pleasure is not the good.
     From: report of Plato (works [c.375 BCE]) by Aristotle - Nicomachean Ethics 1172b27
     A reaction: It is obvious why we like pleasure, but not why intelligence makes it 'better'. Maybe it is just because we enjoy intelligence?
22. Metaethics / C. The Good / 2. Happiness / d. Routes to happiness
Plato decided that the virtuous and happy life was the philosophical life [Plato, by Nehamas]
     Full Idea: Plato came to the conclusion that virtue and happiness consist in the life of philosophy itself.
     From: report of Plato (works [c.375 BCE]) by Alexander Nehamas - Eristic,Antilogic,Sophistic,Dialectic p.117
     A reaction: This view is obviously ridiculous, because it largely excludes almost the entire human race, which sees philosophy as a cul-de-sac, even if it is good. But virtue and happiness need some serious thought.
23. Ethics / C. Virtue Theory / 1. Virtue Theory / a. Nature of virtue
Plato, unusually, said that theoretical and practical wisdom are inseparable [Plato, by Kraut]
     Full Idea: Two virtues that are ordinarily kept distinct - theoretical and practical wisdom - are joined by Plato; he thinks that neither one can be fully possessed unless it is combined with the other.
     From: report of Plato (works [c.375 BCE]) by Richard Kraut - Plato
     A reaction: I get the impression that this doctrine comes from Socrates, whose position is widely reported as 'intellectualist'. Aristotle certainly held the opposite view.
23. Ethics / F. Existentialism / 4. Boredom
Plato is boring [Nietzsche on Plato]
     Full Idea: Plato is boring.
     From: comment on Plato (works [c.375 BCE]) by Friedrich Nietzsche - Twilight of the Idols 9.2
25. Social Practice / F. Life Issues / 5. Sexual Morality
A rape disregards the status of being a person - but so does all assault [Foa]
     Full Idea: In a rape a person is used without proper regard for her personhood - but this is true of every kind of assault.
     From: Pamela Foa (What's Wrong with Rape? [1977], 1)
     A reaction: This is a good step towards her attempt to pin down what is specifically wrong with rape, which strikes me as an extremely important question, and not merely in order to justify punishments.
Rape of children is dreadful, but no one thinks children should have a right of consent [Foa]
     Full Idea: Rape of children is at least as heinous as rape of adults, though few believe that children have or ought to have the same large domain of consent adults (male and female) ought to have.
     From: Pamela Foa (What's Wrong with Rape? [1977], 1)
     A reaction: A powerful point. She is not quite spelling out the crux, which is that no one thinks children should have a right to consent to sexual intercourse, which means that consent is irrelevant in such a case of rape. So it can't be the key to adult rape?
If men should lust and women shouldn't, that makes rape the prevalent sexual model [Foa]
     Full Idea: We are taught that sexual desires are desires women ought not to have and men must have. This is the model which makes necessary an eternal battle of the sexes. It explains why rape is the prevalent model of sexuality.
     From: Pamela Foa (What's Wrong with Rape? [1977], 3)
     A reaction: A striking thought. See 'The Origins of Sex' by F.Dabhoiwala, which claims that women used to be seen as the sexual predators, and the balance shifted in the 18thC. Are women obliged to exhibit lust, in order to defuse rapacious desires?
27. Natural Reality / D. Time / 3. Parts of Time / a. Beginning of time
Almost everyone except Plato thinks that time could not have been generated [Plato, by Aristotle]
     Full Idea: With a single exception (Plato) everyone agrees about time - that it is not generated. Democritus says time is an obvious example of something not generated.
     From: report of Plato (works [c.375 BCE]) by Aristotle - Physics 251b14