Combining Texts

All the ideas for 'Parmenides', 'Mathematics without Foundations' and 'Intermediate Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


114 ideas

2. Reason / A. Nature of Reason / 1. On Reason
When questions are doubtful we should concentrate not on objects but on ideas of the intellect [Plato]
     Full Idea: Doubtful questions should not be discussed in terms of visible objects or in relation to them, but only with reference to ideas conceived by the intellect.
     From: Plato (Parmenides [c.364 BCE], 135e)
2. Reason / B. Laws of Thought / 5. Opposites
Opposites are as unlike as possible [Plato]
     Full Idea: Opposites are as unlike as possible.
     From: Plato (Parmenides [c.364 BCE], 159a)
2. Reason / C. Styles of Reason / 1. Dialectic
Plato's 'Parmenides' is the greatest artistic achievement of the ancient dialectic [Hegel on Plato]
     Full Idea: Plato's 'Parmenides' is the greatest artistic achievement of the ancient dialectic.
     From: comment on Plato (Parmenides [c.364 BCE]) by Georg W.F.Hegel - Phenomenology of Spirit Pref 71
     A reaction: It is a long way from the analytic tradition of philosophy to be singling out a classic text for its 'artistic' achievement. Eventually we may even look back on, say, Kripke's 'Naming and Necessity' and see it in that light.
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Venn Diagrams map three predicates into eight compartments, then look for the conclusion [Bostock]
     Full Idea: Venn Diagrams are a traditional method to test validity of syllogisms. There are three interlocking circles, one for each predicate, thus dividing the universe into eight possible basic elementary quantifications. Is the conclusion in a compartment?
     From: David Bostock (Intermediate Logic [1997], 3.8)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
'Disjunctive Normal Form' is ensuring that no conjunction has a disjunction within its scope [Bostock]
     Full Idea: 'Disjunctive Normal Form' (DNF) is rearranging the occurrences of ∧ and ∨ so that no conjunction sign has any disjunction in its scope. This is achieved by applying two of the distribution laws.
     From: David Bostock (Intermediate Logic [1997], 2.6)
'Conjunctive Normal Form' is ensuring that no disjunction has a conjunction within its scope [Bostock]
     Full Idea: 'Conjunctive Normal Form' (CNF) is rearranging the occurrences of ∧ and ∨ so that no disjunction sign has any conjunction in its scope. This is achieved by applying two of the distribution laws.
     From: David Bostock (Intermediate Logic [1997], 2.6)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Disjunction' says that Γ,φ∨ψ|= iff Γ,φ|= and Γ,ψ|= [Bostock]
     Full Idea: The Principle of Disjunction says that Γ,φ∨ψ |= iff Γ,φ |= and Γ,ψ |=.
     From: David Bostock (Intermediate Logic [1997], 2.5.G)
     A reaction: That is, a disjunction leads to a contradiction if they each separately lead to contradictions.
'Assumptions' says that a formula entails itself (φ|=φ) [Bostock]
     Full Idea: The Principle of Assumptions says that any formula entails itself, i.e. φ |= φ. The principle depends just upon the fact that no interpretation assigns both T and F to the same formula.
     From: David Bostock (Intermediate Logic [1997], 2.5.A)
     A reaction: Thus one can introduce φ |= φ into any proof, and then use it to build more complex sequents needed to attain a particular target formula. Bostock's principle is more general than anything in Lemmon.
'Thinning' allows that if premisses entail a conclusion, then adding further premisses makes no difference [Bostock]
     Full Idea: The Principle of Thinning says that if a set of premisses entails a conclusion, then adding further premisses will still entail the conclusion. It is 'thinning' because it makes a weaker claim. If γ|=φ then γ,ψ|= φ.
     From: David Bostock (Intermediate Logic [1997], 2.5.B)
     A reaction: It is also called 'premise-packing'. It is the characteristic of a 'monotonic' logic - where once something is proved, it stays proved, whatever else is introduced.
The 'conditional' is that Γ|=φ→ψ iff Γ,φ|=ψ [Bostock]
     Full Idea: The Conditional Principle says that Γ |= φ→ψ iff Γ,φ |= ψ. With the addition of negation, this implies φ,φ→ψ |= ψ, which is 'modus ponens'.
     From: David Bostock (Intermediate Logic [1997], 2.5.H)
     A reaction: [Second half is in Ex. 2.5.4]
'Cutting' allows that if x is proved, and adding y then proves z, you can go straight to z [Bostock]
     Full Idea: The Principle of Cutting is the general point that entailment is transitive, extending this to cover entailments with more than one premiss. Thus if γ |= φ and φ,Δ |= ψ then γ,Δ |= ψ. Here φ has been 'cut out'.
     From: David Bostock (Intermediate Logic [1997], 2.5.C)
     A reaction: It might be called the Principle of Shortcutting, since you can get straight to the last conclusion, eliminating the intermediate step.
'Negation' says that Γ,¬φ|= iff Γ|=φ [Bostock]
     Full Idea: The Principle of Negation says that Γ,¬φ |= iff Γ |= φ. We also say that φ,¬φ |=, and hence by 'thinning on the right' that φ,¬φ |= ψ, which is 'ex falso quodlibet'.
     From: David Bostock (Intermediate Logic [1997], 2.5.E)
     A reaction: That is, roughly, if the formula gives consistency, the negation gives contradiction. 'Ex falso' says that anything will follow from a contradiction.
'Conjunction' says that Γ|=φ∧ψ iff Γ|=φ and Γ|=ψ [Bostock]
     Full Idea: The Principle of Conjunction says that Γ |= φ∧ψ iff Γ |= φ and Γ |= ψ. This implies φ,ψ |= φ∧ψ, which is ∧-introduction. It is also implies ∧-elimination.
     From: David Bostock (Intermediate Logic [1997], 2.5.F)
     A reaction: [Second half is Ex. 2.5.3] That is, if they are entailed separately, they are entailed as a unit. It is a moot point whether these principles are theorems of propositional logic, or derivation rules.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
A logic with ¬ and → needs three axiom-schemas and one rule as foundation [Bostock]
     Full Idea: For ¬,→ Schemas: (A1) |-φ→(ψ→φ), (A2) |-(φ→(ψ→ξ)) → ((φ→ψ)→(φ→ξ)), (A3) |-(¬φ→¬ψ) → (ψ→φ), Rule:DET:|-φ,|-φ→ψ then |-ψ
     From: David Bostock (Intermediate Logic [1997], 5.2)
     A reaction: A1 says everything implies a truth, A2 is conditional proof, and A3 is contraposition. DET is modus ponens. This is Bostock's compact near-minimal axiom system for proposition logic. He adds two axioms and another rule for predicate logic.
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
A 'free' logic can have empty names, and a 'universally free' logic can have empty domains [Bostock]
     Full Idea: A 'free' logic is one in which names are permitted to be empty. A 'universally free' logic is one in which the domain of an interpretation may also be empty.
     From: David Bostock (Intermediate Logic [1997], 8.6)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
We understand some statements about all sets [Putnam]
     Full Idea: We seem to understand some statements about all sets (e.g. 'for every set x and every set y, there is a set z which is the union of x and y').
     From: Hilary Putnam (Mathematics without Foundations [1967], p.308)
     A reaction: His example is the Axiom of Choice. Presumably this is why the collection of all sets must be referred to as a 'class', since we can talk about it, but cannot define it.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Truth is the basic notion in classical logic [Bostock]
     Full Idea: The most fundamental notion in classical logic is that of truth.
     From: David Bostock (Intermediate Logic [1997], 1.1)
     A reaction: The opening sentence of his book. Hence the first half of the book is about semantics, and only the second half deals with proof. Compare Idea 10282. The thought seems to be that you could leave out truth, but that makes logic pointless.
Elementary logic cannot distinguish clearly between the finite and the infinite [Bostock]
     Full Idea: In very general terms, we cannot express the distinction between what is finite and what is infinite without moving essentially beyond the resources available in elementary logic.
     From: David Bostock (Intermediate Logic [1997], 4.8)
     A reaction: This observation concludes a discussion of Compactness in logic.
Fictional characters wreck elementary logic, as they have contradictions and no excluded middle [Bostock]
     Full Idea: Discourse about fictional characters leads to a breakdown of elementary logic. We accept P or ¬P if the relevant story says so, but P∨¬P will not be true if the relevant story says nothing either way, and P∧¬P is true if the story is inconsistent.
     From: David Bostock (Intermediate Logic [1997], 8.5)
     A reaction: I really like this. Does one need to invent a completely new logic for fictional characters? Or must their logic be intuitionist, or paraconsistent, or both?
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
The syntactic turnstile |- φ means 'there is a proof of φ' or 'φ is a theorem' [Bostock]
     Full Idea: The syntactic turnstile |- φ means 'There is a proof of φ' (in the system currently being considered). Another way of saying the same thing is 'φ is a theorem'.
     From: David Bostock (Intermediate Logic [1997], 5.1)
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Validity is a conclusion following for premises, even if there is no proof [Bostock]
     Full Idea: The classical definition of validity counts an argument as valid if and only if the conclusion does in fact follow from the premises, whether or not the argument contains any demonstration of this fact.
     From: David Bostock (Intermediate Logic [1997], 1.2)
     A reaction: Hence validity is given by |= rather than by |-. A common example is 'it is red so it is coloured', which seems true but beyond proof. In the absence of formal proof, you wonder whether validity is merely a psychological notion.
It seems more natural to express |= as 'therefore', rather than 'entails' [Bostock]
     Full Idea: In practice we avoid quotation marks and explicitly set-theoretic notation that explaining |= as 'entails' appears to demand. Hence it seems more natural to explain |= as simply representing the word 'therefore'.
     From: David Bostock (Intermediate Logic [1997], 1.3)
     A reaction: Not sure I quite understand that, but I have trained myself to say 'therefore' for the generic use of |=. In other consequences it seems better to read it as 'semantic consequence', to distinguish it from |-.
Γ|=φ is 'entails'; Γ|= is 'is inconsistent'; |=φ is 'valid' [Bostock]
     Full Idea: If we write Γ |= φ, with one formula to the right, then the turnstile abbreviates 'entails'. For a sequent of the form Γ |= it can be read as 'is inconsistent'. For |= φ we read it as 'valid'.
     From: David Bostock (Intermediate Logic [1997], 1.3)
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
MPP: 'If Γ|=φ and Γ|=φ→ψ then Γ|=ψ' (omit Γs for Detachment) [Bostock]
     Full Idea: The Rule of Detachment is a version of Modus Ponens, and says 'If |=φ and |=φ→ψ then |=ψ'. This has no assumptions. Modus Ponens is the more general rule that 'If Γ|=φ and Γ|=φ→ψ then Γ|=ψ'.
     From: David Bostock (Intermediate Logic [1997], 5.3)
     A reaction: Modus Ponens is actually designed for use in proof based on assumptions (which isn't always the case). In Detachment the formulae are just valid, without dependence on assumptions to support them.
MPP is a converse of Deduction: If Γ |- φ→ψ then Γ,φ|-ψ [Bostock]
     Full Idea: Modus Ponens is equivalent to the converse of the Deduction Theorem, namely 'If Γ |- φ→ψ then Γ,φ|-ψ'.
     From: David Bostock (Intermediate Logic [1997], 5.3)
     A reaction: See 13615 for details of the Deduction Theorem. See 13614 for Modus Ponens.
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
The sign '=' is a two-place predicate expressing that 'a is the same thing as b' (a=b) [Bostock]
     Full Idea: We shall use 'a=b' as short for 'a is the same thing as b'. The sign '=' thus expresses a particular two-place predicate. Officially we will use 'I' as the identity predicate, so that 'Iab' is as formula, but we normally 'abbreviate' this to 'a=b'.
     From: David Bostock (Intermediate Logic [1997], 8.1)
|= α=α and α=β |= φ(α/ξ ↔ φ(β/ξ) fix identity [Bostock]
     Full Idea: We usually take these two principles together as the basic principles of identity: |= α=α and α=β |= φ(α/ξ) ↔ φ(β/ξ). The second (with scant regard for history) is known as Leibniz's Law.
     From: David Bostock (Intermediate Logic [1997], 8.1)
If we are to express that there at least two things, we need identity [Bostock]
     Full Idea: To say that there is at least one thing x such that Fx we need only use an existential quantifier, but to say that there are at least two things we need identity as well.
     From: David Bostock (Intermediate Logic [1997], 8.1)
     A reaction: The only clear account I've found of why logic may need to be 'with identity'. Without it, you can only reason about one thing or all things. Presumably plural quantification no longer requires '='?
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Truth-functors are usually held to be defined by their truth-tables [Bostock]
     Full Idea: The usual view of the meaning of truth-functors is that each is defined by its own truth-table, independently of any other truth-functor.
     From: David Bostock (Intermediate Logic [1997], 2.7)
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A 'zero-place' function just has a single value, so it is a name [Bostock]
     Full Idea: We can talk of a 'zero-place' function, which is a new-fangled name for a familiar item; it just has a single value, and so it has the same role as a name.
     From: David Bostock (Intermediate Logic [1997], 8.2)
A 'total' function ranges over the whole domain, a 'partial' function over appropriate inputs [Bostock]
     Full Idea: Usually we allow that a function is defined for arguments of a suitable kind (a 'partial' function), but we can say that each function has one value for any object whatever, from the whole domain that our quantifiers range over (a 'total' function).
     From: David Bostock (Intermediate Logic [1997], 8.2)
     A reaction: He points out (p.338) that 'the father of..' is a functional expression, but it wouldn't normally take stones as input, so seems to be a partial function. But then it doesn't even take all male humans either. It only takes fathers!
5. Theory of Logic / F. Referring in Logic / 1. Naming / a. Names
In logic, a name is just any expression which refers to a particular single object [Bostock]
     Full Idea: The important thing about a name, for logical purposes, is that it is used to make a singular reference to a particular object; ..we say that any expression too may be counted as a name, for our purposes, it it too performs the same job.
     From: David Bostock (Intermediate Logic [1997], 3.1)
     A reaction: He cites definite descriptions as the most notoriously difficult case, in deciding whether or not they function as names. I takes it as pretty obvious that sometimes they do and sometimes they don't (in ordinary usage).
5. Theory of Logic / F. Referring in Logic / 1. Naming / e. Empty names
An expression is only a name if it succeeds in referring to a real object [Bostock]
     Full Idea: An expression is not counted as a name unless it succeeds in referring to an object, i.e. unless there really is an object to which it refers.
     From: David Bostock (Intermediate Logic [1997], 3.1)
     A reaction: His 'i.e.' makes the existence condition sound sufficient, but in ordinary language you don't succeed in referring to 'that man over there' just because he exists. In modal contexts we presumably refer to hypothetical objects (pace Lewis).
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Definite descriptions don't always pick out one thing, as in denials of existence, or errors [Bostock]
     Full Idea: It is natural to suppose one only uses a definite description when one believes it describes only one thing, but exceptions are 'there is no such thing as the greatest prime number', or saying something false where the reference doesn't occur.
     From: David Bostock (Intermediate Logic [1997], 8.3)
Definite desciptions resemble names, but can't actually be names, if they don't always refer [Bostock]
     Full Idea: Although a definite description looks like a complex name, and in many ways behaves like a name, still it cannot be a name if names must always refer to objects. Russell gave the first proposal for handling such expressions.
     From: David Bostock (Intermediate Logic [1997], 8.3)
     A reaction: I take the simple solution to be a pragmatic one, as roughly shown by Donnellan, that sometimes they are used exactly like names, and sometimes as something else. The same phrase can have both roles. Confusing for logicians. Tough.
Because of scope problems, definite descriptions are best treated as quantifiers [Bostock]
     Full Idea: Because of the scope problem, it now seems better to 'parse' definition descriptions not as names but as quantifiers. 'The' is to be treated in the same category as acknowledged quantifiers like 'all' and 'some'. We write Ix - 'for the x such that..'.
     From: David Bostock (Intermediate Logic [1997], 8.3)
     A reaction: This seems intuitively rather good, since quantification in normal speech is much more sophisticated than the crude quantification of classical logic. But the fact is that they often function as names (but see Idea 13817).
Definite descriptions are usually treated like names, and are just like them if they uniquely refer [Bostock]
     Full Idea: In practice, definite descriptions are for the most part treated as names, since this is by far the most convenient notation (even though they have scope). ..When a description is uniquely satisfied then it does behave like a name.
     From: David Bostock (Intermediate Logic [1997], 8.3)
     A reaction: Apparent names themselves have problems when they wander away from uniquely picking out one thing, as in 'John Doe'.
We are only obliged to treat definite descriptions as non-names if only the former have scope [Bostock]
     Full Idea: If it is really true that definite descriptions have scopes whereas names do not, then Russell must be right to claim that definite descriptions are not names. If, however, this is not true, then it does no harm to treat descriptions as complex names.
     From: David Bostock (Intermediate Logic [1997], 8.8)
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / c. Theory of definite descriptions
Names do not have scope problems (e.g. in placing negation), but Russell's account does have that problem [Bostock]
     Full Idea: In orthodox logic names are not regarded as having scope (for example, in where a negation is placed), whereas on Russell's theory definite descriptions certainly do. Russell had his own way of dealing with this.
     From: David Bostock (Intermediate Logic [1997], 8.3)
5. Theory of Logic / G. Quantification / 1. Quantification
'Prenex normal form' is all quantifiers at the beginning, out of the scope of truth-functors [Bostock]
     Full Idea: A formula is said to be in 'prenex normal form' (PNF) iff all its quantifiers occur in a block at the beginning, so that no quantifier is in the scope of any truth-functor.
     From: David Bostock (Intermediate Logic [1997], 3.7)
     A reaction: Bostock provides six equivalences which can be applied to manouevre any formula into prenex normal form. He proves that every formula can be arranged in PNF.
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
If we allow empty domains, we must allow empty names [Bostock]
     Full Idea: We can show that if empty domains are permitted, then empty names must be permitted too.
     From: David Bostock (Intermediate Logic [1997], 8.4)
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
An 'informal proof' is in no particular system, and uses obvious steps and some ordinary English [Bostock]
     Full Idea: An 'informal proof' is not in any particular proof system. One may use any rule of proof that is 'sufficiently obvious', and there is quite a lot of ordinary English in the proof, explaining what is going on at each step.
     From: David Bostock (Intermediate Logic [1997], 8.1)
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Quantification adds two axiom-schemas and a new rule [Bostock]
     Full Idea: New axiom-schemas for quantifiers: (A4) |-∀ξφ → φ(α/ξ), (A5) |-∀ξ(ψ→φ) → (ψ→∀ξφ), plus the rule GEN: If |-φ the |-∀ξφ(ξ/α).
     From: David Bostock (Intermediate Logic [1997], 5.6)
     A reaction: This follows on from Idea 13610, where he laid out his three axioms and one rule for propositional (truth-functional) logic. This Idea plus 13610 make Bostock's proposed axiomatisation of first-order logic.
Axiom systems from Frege, Russell, Church, Lukasiewicz, Tarski, Nicod, Kleene, Quine... [Bostock]
     Full Idea: Notably axiomatisations of first-order logic are by Frege (1879), Russell and Whitehead (1910), Church (1956), Lukasiewicz and Tarski (1930), Lukasiewicz (1936), Nicod (1917), Kleene (1952) and Quine (1951). Also Bostock (1997).
     From: David Bostock (Intermediate Logic [1997], 5.8)
     A reaction: My summary, from Bostock's appendix 5.8, which gives details of all of these nine systems. This nicely illustrates the status and nature of axiom systems, which have lost the absolute status they seemed to have in Euclid.
5. Theory of Logic / H. Proof Systems / 3. Proof from Assumptions
'Conditonalised' inferences point to the Deduction Theorem: If Γ,φ|-ψ then Γ|-φ→ψ [Bostock]
     Full Idea: If a group of formulae prove a conclusion, we can 'conditionalize' this into a chain of separate inferences, which leads to the Deduction Theorem (or Conditional Proof), that 'If Γ,φ|-ψ then Γ|-φ→ψ'.
     From: David Bostock (Intermediate Logic [1997], 5.3)
     A reaction: This is the rule CP (Conditional Proof) which can be found in the rules for propositional logic I transcribed from Lemmon's book.
Proof by Assumptions can always be reduced to Proof by Axioms, using the Deduction Theorem [Bostock]
     Full Idea: By repeated transformations using the Deduction Theorem, any proof from assumptions can be transformed into a fully conditionalized proof, which is then an axiomatic proof.
     From: David Bostock (Intermediate Logic [1997], 5.6)
     A reaction: Since proof using assumptions is perhaps the most standard proof system (e.g. used in Lemmon, for many years the standard book at Oxford University), the Deduction Theorem is crucial for giving it solid foundations.
The Deduction Theorem and Reductio can 'discharge' assumptions - they aren't needed for the new truth [Bostock]
     Full Idea: Like the Deduction Theorem, one form of Reductio ad Absurdum (If Γ,φ|-[absurdity] then Γ|-¬φ) 'discharges' an assumption. Assume φ and obtain a contradiction, then we know ¬&phi, without assuming φ.
     From: David Bostock (Intermediate Logic [1997], 5.7)
     A reaction: Thus proofs from assumption either arrive at conditional truths, or at truths that are true irrespective of what was initially assumed.
The Deduction Theorem greatly simplifies the search for proof [Bostock]
     Full Idea: Use of the Deduction Theorem greatly simplifies the search for proof (or more strictly, the task of showing that there is a proof).
     From: David Bostock (Intermediate Logic [1997], 5.3)
     A reaction: See 13615 for details of the Deduction Theorem. Bostock is referring to axiomatic proof, where it can be quite hard to decide which axioms are relevant. The Deduction Theorem enables the making of assumptions.
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
Natural deduction takes proof from assumptions (with its rules) as basic, and axioms play no part [Bostock]
     Full Idea: Natural deduction takes the notion of proof from assumptions as a basic notion, ...so it will use rules for use in proofs from assumptions, and axioms (as traditionally understood) will have no role to play.
     From: David Bostock (Intermediate Logic [1997], 6.1)
     A reaction: The main rules are those for introduction and elimination of truth functors.
Excluded middle is an introduction rule for negation, and ex falso quodlibet will eliminate it [Bostock]
     Full Idea: Many books take RAA (reductio) and DNE (double neg) as the natural deduction introduction- and elimination-rules for negation, but RAA is not a natural introduction rule. I prefer TND (tertium) and EFQ (ex falso) for ¬-introduction and -elimination.
     From: David Bostock (Intermediate Logic [1997], 6.2)
In natural deduction we work from the premisses and the conclusion, hoping to meet in the middle [Bostock]
     Full Idea: When looking for a proof of a sequent, the best we can do in natural deduction is to work simultaneously in both directions, forward from the premisses, and back from the conclusion, and hope they will meet in the middle.
     From: David Bostock (Intermediate Logic [1997], 6.5)
Natural deduction rules for → are the Deduction Theorem (→I) and Modus Ponens (→E) [Bostock]
     Full Idea: Natural deduction adopts for → as rules the Deduction Theorem and Modus Ponens, here called →I and →E. If ψ follows φ in the proof, we can write φ→ψ (→I). φ and φ→ψ permit ψ (→E).
     From: David Bostock (Intermediate Logic [1997], 6.2)
     A reaction: Natural deduction has this neat and appealing way of formally introducing or eliminating each connective, so that you know where you are, and you know what each one means.
5. Theory of Logic / H. Proof Systems / 5. Tableau Proof
Unlike natural deduction, semantic tableaux have recipes for proving things [Bostock]
     Full Idea: With semantic tableaux there are recipes for proof-construction that we can operate, whereas with natural deduction there are not.
     From: David Bostock (Intermediate Logic [1997], 6.5)
Tableau proofs use reduction - seeking an impossible consequence from an assumption [Bostock]
     Full Idea: A tableau proof is a proof by reduction ad absurdum. One begins with an assumption, and one develops the consequences of that assumption, seeking to derive an impossible consequence.
     From: David Bostock (Intermediate Logic [1997], 4.1)
A completed open branch gives an interpretation which verifies those formulae [Bostock]
     Full Idea: An open branch in a completed tableau will always yield an interpretation that verifies every formula on the branch.
     From: David Bostock (Intermediate Logic [1997], 4.7)
     A reaction: In other words the open branch shows a model which seems to work (on the available information). Similarly a closed branch gives a model which won't work - a counterexample.
Non-branching rules add lines, and branching rules need a split; a branch with a contradiction is 'closed' [Bostock]
     Full Idea: Rules for semantic tableaus are of two kinds - non-branching rules and branching rules. The first allow the addition of further lines, and the second requires splitting the branch. A branch which assigns contradictory values to a formula is 'closed'.
     From: David Bostock (Intermediate Logic [1997], 4.1)
     A reaction: [compressed] Thus 'and' stays on one branch, asserting both formulae, but 'or' splits, checking first one and then the other. A proof succeeds when all the branches are closed, showing that the initial assumption leads only to contradictions.
In a tableau proof no sequence is established until the final branch is closed; hypotheses are explored [Bostock]
     Full Idea: In a tableau system no sequent is established until the final step of the proof, when the last branch closes, and until then we are simply exploring a hypothesis.
     From: David Bostock (Intermediate Logic [1997], 7.3)
     A reaction: This compares sharply with a sequence calculus, where every single step is a conclusive proof of something. So use tableaux for exploring proofs, and then sequence calculi for writing them up?
A tree proof becomes too broad if its only rule is Modus Ponens [Bostock]
     Full Idea: When the only rule of inference is Modus Ponens, the branches of a tree proof soon spread too wide for comfort.
     From: David Bostock (Intermediate Logic [1997], 6.4)
Tableau rules are all elimination rules, gradually shortening formulae [Bostock]
     Full Idea: In their original setting, all the tableau rules are elimination rules, allowing us to replace a longer formula by its shorter components.
     From: David Bostock (Intermediate Logic [1997], 7.3)
5. Theory of Logic / H. Proof Systems / 6. Sequent Calculi
Each line of a sequent calculus is a conclusion of previous lines, each one explicitly recorded [Bostock]
     Full Idea: A sequent calculus keeps an explicit record of just what sequent is established at each point in a proof. Every line is itself the sequent proved at that point. It is not a linear sequence or array of formulae, but a matching array of whole sequents.
     From: David Bostock (Intermediate Logic [1997], 7.1)
A sequent calculus is good for comparing proof systems [Bostock]
     Full Idea: A sequent calculus is a useful tool for comparing two systems that at first look utterly different (such as natural deduction and semantic tableaux).
     From: David Bostock (Intermediate Logic [1997], 7.2)
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Interpretation by assigning objects to names, or assigning them to variables first [Bostock, by PG]
     Full Idea: There are two approaches to an 'interpretation' of a logic: the first method assigns objects to names, and then defines connectives and quantifiers, focusing on truth; the second assigns objects to variables, then variables to names, using satisfaction.
     From: report of David Bostock (Intermediate Logic [1997], 3.4) by PG - Db (lexicon)
     A reaction: [a summary of nine elusive pages in Bostock] He says he prefers the first method, but the second method is more popular because it handles open formulas, by treating free variables as if they were names.
5. Theory of Logic / I. Semantics of Logic / 5. Extensionalism
Extensionality is built into ordinary logic semantics; names have objects, predicates have sets of objects [Bostock]
     Full Idea: Extensionality is built into the semantics of ordinary logic. When a name-letter is interpreted as denoting something, we just provide the object denoted. All that we provide for a one-place predicate-letter is the set of objects that it is true of..
     From: David Bostock (Intermediate Logic [1997])
     A reaction: Could we keep the syntax of ordinary logic, and provide a wildly different semantics, much closer to real life? We could give up these dreadful 'objects' that Frege lumbered us with. Logic for processes, etc.
If an object has two names, truth is undisturbed if the names are swapped; this is Extensionality [Bostock]
     Full Idea: If two names refer to the same object, then in any proposition which contains either of them the other may be substituted in its place, and the truth-value of the proposition of the proposition will be unaltered. This is the Principle of Extensionality.
     From: David Bostock (Intermediate Logic [1997], 3.1)
     A reaction: He acknowledges that ordinary language is full of counterexamples, such as 'he doesn't know the Morning Star and the Evening Star are the same body' (when he presumably knows that the Morning Star is the Morning Star). This is logic. Like maths.
5. Theory of Logic / K. Features of Logics / 2. Consistency
For 'negation-consistent', there is never |-(S)φ and |-(S)¬φ [Bostock]
     Full Idea: Any system of proof S is said to be 'negation-consistent' iff there is no formula such that |-(S)φ and |-(S)¬φ.
     From: David Bostock (Intermediate Logic [1997], 4.5)
     A reaction: Compare Idea 13542. This version seems to be a 'strong' version, as it demands a higher standard than 'absolute consistency'. Both halves of the condition would have to be established.
A proof-system is 'absolutely consistent' iff we don't have |-(S)φ for every formula [Bostock]
     Full Idea: Any system of proof S is said to be 'absolutely consistent' iff it is not the case that for every formula we have |-(S)φ.
     From: David Bostock (Intermediate Logic [1997], 4.5)
     A reaction: Bostock notes that a sound system will be both 'negation-consistent' (Idea 13541) and absolutely consistent. 'Tonk' systems can be shown to be unsound because the two come apart.
A set of formulae is 'inconsistent' when there is no interpretation which can make them all true [Bostock]
     Full Idea: 'Γ |=' means 'Γ is a set of closed formulae, and there is no (standard) interpretation in which all of the formulae in Γ are true'. We abbreviate this last to 'Γ is inconsistent'.
     From: David Bostock (Intermediate Logic [1997], 4.5)
     A reaction: This is a semantic approach to inconsistency, in terms of truth, as opposed to saying that we cannot prove both p and ¬p. I take this to be closer to the true concept, since you need never have heard of 'proof' to understand 'inconsistent'.
5. Theory of Logic / K. Features of Logics / 6. Compactness
Inconsistency or entailment just from functors and quantifiers is finitely based, if compact [Bostock]
     Full Idea: Being 'compact' means that if we have an inconsistency or an entailment which holds just because of the truth-functors and quantifiers involved, then it is always due to a finite number of the propositions in question.
     From: David Bostock (Intermediate Logic [1997], 4.8)
     A reaction: Bostock says this is surprising, given the examples 'a is not a parent of a parent of b...' etc, where an infinity seems to establish 'a is not an ancestor of b'. The point, though, is that this truth doesn't just depend on truth-functors and quantifiers.
Compactness means an infinity of sequents on the left will add nothing new [Bostock]
     Full Idea: The logic of truth-functions is compact, which means that sequents with infinitely many formulae on the left introduce nothing new. Hence we can confine our attention to finite sequents.
     From: David Bostock (Intermediate Logic [1997], 5.5)
     A reaction: This makes it clear why compactness is a limitation in logic. If you want the logic to be unlimited in scope, it isn't; it only proves things from finite numbers of sequents. This makes it easier to prove completeness for the system.
5. Theory of Logic / L. Paradox / 3. Antinomies
Plato found antinomies in ideas, Kant in space and time, and Bradley in relations [Plato, by Ryle]
     Full Idea: Plato (in 'Parmenides') shows that the theory that 'Eide' are substances, and Kant that space and time are substances, and Bradley that relations are substances, all lead to aninomies.
     From: report of Plato (Parmenides [c.364 BCE]) by Gilbert Ryle - Are there propositions? 'Objections'
Plato's 'Parmenides' is perhaps the best collection of antinomies ever made [Russell on Plato]
     Full Idea: Plato's 'Parmenides' is perhaps the best collection of antinomies ever made.
     From: comment on Plato (Parmenides [c.364 BCE]) by Bertrand Russell - The Principles of Mathematics §337
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
I do not believe mathematics either has or needs 'foundations' [Putnam]
     Full Idea: I do not believe mathematics either has or needs 'foundations'.
     From: Hilary Putnam (Mathematics without Foundations [1967])
     A reaction: Agreed that mathematics can function well without foundations (given that the enterprise got started with no thought for such things), the ontology of the subject still strikes me as a major question, though maybe not for mathematicians.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
It is conceivable that the axioms of arithmetic or propositional logic might be changed [Putnam]
     Full Idea: I believe that under certain circumstances revisions in the axioms of arithmetic, or even of the propositional calculus (e.g. the adoption of a modular logic as a way out of the difficulties in quantum mechanics), is fully conceivable.
     From: Hilary Putnam (Mathematics without Foundations [1967], p.303)
     A reaction: One can change the axioms of a system without necessarily changing the system (by swapping an axiom and a theorem). Especially if platonism is true, since the eternal objects reside calmly above our attempts to axiomatise them!
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Ordinary or mathematical induction assumes for the first, then always for the next, and hence for all [Bostock]
     Full Idea: The principle of mathematical (or ordinary) induction says suppose the first number, 0, has a property; suppose that if any number has that property, then so does the next; then it follows that all numbers have the property.
     From: David Bostock (Intermediate Logic [1997], 2.8)
     A reaction: Ordinary induction is also known as 'weak' induction. Compare Idea 13359 for 'strong' or complete induction. The number sequence must have a first element, so this doesn't work for the integers.
Complete induction assumes for all numbers less than n, then also for n, and hence for all numbers [Bostock]
     Full Idea: The principle of complete induction says suppose that for every number, if all the numbers less than it have a property, then so does it; it then follows that every number has the property.
     From: David Bostock (Intermediate Logic [1997], 2.8)
     A reaction: Complete induction is also known as 'strong' induction. Compare Idea 13358 for 'weak' or mathematical induction. The number sequence need have no first element.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
One is, so numbers exist, so endless numbers exist, and each one must partake of being [Plato]
     Full Idea: If one is, there must also necessarily be number - Necessarily - But if there is number, there would be many, and an unlimited multitude of beings. ..So if all partakes of being, each part of number would also partake of it.
     From: Plato (Parmenides [c.364 BCE], 144a)
     A reaction: This seems to commit to numbers having being, then to too many numbers, and hence to too much being - but without backing down and wondering whether numbers had being after all. Aristotle disagreed.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Maybe mathematics is empirical in that we could try to change it [Putnam]
     Full Idea: Mathematics might be 'empirical' in the sense that one is allowed to try to put alternatives into the field.
     From: Hilary Putnam (Mathematics without Foundations [1967], p.303)
     A reaction: He admits that change is highly unlikely. It take hardcore Millian arithmetic to be only changeable if pebbles start behaving very differently with regard to their quantities, which appears to be almost inconceivable.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Science requires more than consistency of mathematics [Putnam]
     Full Idea: Science demands much more of a mathematical theory than that it should merely be consistent, as the example of the various alternative systems of geometry dramatizes.
     From: Hilary Putnam (Mathematics without Foundations [1967])
     A reaction: Well said. I don't agree with Putnam's Indispensability claims, but if an apparent system of numbers or lines has no application to the world then I don't consider it to be mathematics. It is a new game, like chess.
7. Existence / A. Nature of Existence / 3. Being / c. Becoming
The one was and is and will be and was becoming and is becoming and will become [Plato]
     Full Idea: The one was and is and will be and was becoming and is becoming and will become.
     From: Plato (Parmenides [c.364 BCE], 155d)
7. Existence / A. Nature of Existence / 3. Being / f. Primary being
Plato's Parmenides has a three-part theory, of Primal One, a One-Many, and a One-and-Many [Plato, by Plotinus]
     Full Idea: The Platonic Parmenides is more exact [than Parmenides himself]; the distinction is made between the Primal One, a strictly pure Unity, and a secondary One which is a One-Many, and a third which is a One-and-Many.
     From: report of Plato (Parmenides [c.364 BCE]) by Plotinus - The Enneads 5.1.08
     A reaction: Plotinus approves of this three-part theory. Parmenides has the problem that the highest Being contains no movement. By placing the One outside Being you can give it powers which an existent thing cannot have. Cf the concept of God.
7. Existence / D. Theories of Reality / 3. Reality
Absolute ideas, such as the Good and the Beautiful, cannot be known by us [Plato]
     Full Idea: The absolute good and the beautiful and all which we conceive to be absolute ideas are unknown to us.
     From: Plato (Parmenides [c.364 BCE], 134c)
7. Existence / D. Theories of Reality / 4. Anti-realism
You can't deny a hypothesis a truth-value simply because we may never know it! [Putnam]
     Full Idea: Surely the mere fact that we may never know whether the continuum hypothesis is true or false is by itself just no reason to think that it doesn't have a truth value!
     From: Hilary Putnam (Mathematics without Foundations [1967])
     A reaction: This is Putnam in 1967. Things changed later. Personally I am with the younger man all they way, but I reserve the right to totally change my mind.
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
Relations can be one-many (at most one on the left) or many-one (at most one on the right) [Bostock]
     Full Idea: A relation is 'one-many' if for anything on the right there is at most one on the left (∀xyz(Rxz∧Ryz→x=y), and is 'many-one' if for anything on the left there is at most one on the right (∀xyz(Rzx∧Rzy→x=y).
     From: David Bostock (Intermediate Logic [1997], 8.1)
A relation is not reflexive, just because it is transitive and symmetrical [Bostock]
     Full Idea: It is easy to fall into the error of supposing that a relation which is both transitive and symmetrical must also be reflexive.
     From: David Bostock (Intermediate Logic [1997], 4.7)
     A reaction: Compare Idea 14430! Transivity will take you there, and symmetricality will get you back, but that doesn't entitle you to take the shortcut?
8. Modes of Existence / D. Universals / 2. Need for Universals
You must always mean the same thing when you utter the same name [Plato]
     Full Idea: You must always mean the same thing when you utter the same name.
     From: Plato (Parmenides [c.364 BCE], 147d)
If you deny that each thing always stays the same, you destroy the possibility of discussion [Plato]
     Full Idea: If a person denies that the idea of each thing is always the same, he will utterly destroy the power of carrying on discussion.
     From: Plato (Parmenides [c.364 BCE], 135c)
8. Modes of Existence / D. Universals / 6. Platonic Forms / a. Platonic Forms
If admirable things have Forms, maybe everything else does as well [Plato]
     Full Idea: It is troubling that if admirable things have abstract ideas, then perhaps everything else must have ideas as well.
     From: Plato (Parmenides [c.364 BCE], 130d)
If absolute ideas existed in us, they would cease to be absolute [Plato]
     Full Idea: None of the absolute ideas exists in us, because then it would no longer be absolute.
     From: Plato (Parmenides [c.364 BCE], 133c)
Greatness and smallness must exist, to be opposed to one another, and come into being in things [Plato]
     Full Idea: These two ideas, greatness and smallness, exist, do they not? For if they did not exist, they could not be opposites of one another, and could not come into being in things.
     From: Plato (Parmenides [c.364 BCE], 149e)
Plato moves from Forms to a theory of genera and principles in his later work [Plato, by Frede,M]
     Full Idea: It seems to me that Plato in the later dialogues, beginning with the second half of 'Parmenides', wants to substitute a theory of genera and theory of principles that constitute these genera for the earlier theory of forms.
     From: report of Plato (Parmenides [c.364 BCE]) by Michael Frede - Title, Unity, Authenticity of the 'Categories' V
     A reaction: My theory is that the later Plato came under the influence of the brilliant young Aristotle, and this idea is a symptom of it. The theory of 'principles' sounds like hylomorphism to me.
It would be absurd to think there were abstract Forms for vile things like hair, mud and dirt [Plato]
     Full Idea: Are there abstract ideas for such things as hair, mud and dirt, which are particularly vile and worthless? That would be quite absurd.
     From: Plato (Parmenides [c.364 BCE], 130d)
The concept of a master includes the concept of a slave [Plato]
     Full Idea: Mastership in the abstract is mastership of slavery in the abstract.
     From: Plato (Parmenides [c.364 BCE], 133e)
8. Modes of Existence / D. Universals / 6. Platonic Forms / b. Partaking
Participation is not by means of similarity, so we are looking for some other method of participation [Plato]
     Full Idea: Participation is not by means of likeness, so we must seek some other method of participation.
     From: Plato (Parmenides [c.364 BCE], 133a)
Each idea is in all its participants at once, just as daytime is a unity but in many separate places at once [Plato]
     Full Idea: Just as day is in many places at once, but not separated from itself, so each idea might be in all its participants at once.
     From: Plato (Parmenides [c.364 BCE], 131b)
If things are made alike by participating in something, that thing will be the absolute idea [Plato]
     Full Idea: That by participation in which like things are made like, will be the absolute idea, will it not?
     From: Plato (Parmenides [c.364 BCE], 132e)
If things partake of ideas, this implies either that everything thinks, or that everything actually is thought [Plato]
     Full Idea: If all things partake of ideas, must either everything be made of thoughts and everything thinks, or everything is thought, and so can't think?
     From: Plato (Parmenides [c.364 BCE], 132c)
The whole idea of each Form must be found in each thing which participates in it [Plato]
     Full Idea: The whole idea of each form (of beauty, justice etc) must be found in each thing which participates in it.
     From: Plato (Parmenides [c.364 BCE], 131a)
8. Modes of Existence / D. Universals / 6. Platonic Forms / c. Self-predication
If absolute greatness and great things are seen as the same, another thing appears which makes them seem great [Plato]
     Full Idea: If you regard the absolute great and the many great things in the same way, will not another appear beyond, by which all these must appear to be great?
     From: Plato (Parmenides [c.364 BCE], 132a)
Nothing can be like an absolute idea, because a third idea intervenes to make them alike (leading to a regress) [Plato]
     Full Idea: It is impossible for anything to be like an absolute idea, because a third idea will appear to make them alike, and if that is like anything, it will lead to another idea, and so on.
     From: Plato (Parmenides [c.364 BCE], 133a)
9. Objects / B. Unity of Objects / 1. Unifying an Object / b. Unifying aggregates
Parts must belong to a created thing with a distinct form [Plato]
     Full Idea: The part would not be the part of many things or all, but of some one character ['ideas'] and of some one thing, which we call a 'whole', since it has come to be one complete [perfected] thing composed [created] of all.
     From: Plato (Parmenides [c.364 BCE], 157d)
     A reaction: A serious shot by Plato at what identity is. Harte quotes it (125) and shows that 'character' is Gk 'idea', and 'composed' will translate as 'created'. 'Form' links this Platonic passage to Aristotle's hylomorphism.
9. Objects / C. Structure of Objects / 5. Composition of an Object
In Parmenides, if composition is identity, a whole is nothing more than its parts [Plato, by Harte,V]
     Full Idea: At the heart of the 'Parmenides' puzzles about composition is the thesis that composition is identity. Considered thus, a whole adds nothing to an ontology that already includes its parts
     From: report of Plato (Parmenides [c.364 BCE]) by Verity Harte - Plato on Parts and Wholes 2.5
     A reaction: There has to be more to a unified identity that mere proximity of the parts. When do parts come together, and when do they actually 'compose' something?
9. Objects / C. Structure of Objects / 8. Parts of Objects / a. Parts of objects
Plato says only a one has parts, and a many does not [Plato, by Harte,V]
     Full Idea: In 'Parmenides' it is argued that a part cannot be part of a many, but must be part of something one.
     From: report of Plato (Parmenides [c.364 BCE], 157c) by Verity Harte - Plato on Parts and Wholes 3.2
     A reaction: This looks like the right way to go with the term 'part'. We presuppose a unity before we even talk of its parts, so we can't get into contradictions and paradoxes about their relationships.
Anything which has parts must be one thing, and parts are of a one, not of a many [Plato]
     Full Idea: The whole of which the parts are parts must be one thing composed of many; for each of the parts must be part, not of a many, but of a whole.
     From: Plato (Parmenides [c.364 BCE], 157c)
     A reaction: This is a key move of metaphysics, and we should hang on to it. The other way madness lies.
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
It seems that the One must be composed of parts, which contradicts its being one [Plato]
     Full Idea: The One must be composed of parts, both being a whole and having parts. So on both grounds the One would thus be many and not one. But it must be not many, but one. So if the One will be one, it will neither be a whole, nor have parts.
     From: Plato (Parmenides [c.364 BCE], 137c09), quoted by Kathrin Koslicki - The Structure of Objects 5.2
     A reaction: This is the starting point for Plato's metaphysical discussion of objects. It seems to begin a line of thought which is completed by Aristotle, surmising that only an essential structure can bestow identity on a bunch of parts.
9. Objects / F. Identity among Objects / 5. Self-Identity
If non-existent things are self-identical, they are just one thing - so call it the 'null object' [Bostock]
     Full Idea: If even non-existent things are still counted as self-identical, then all non-existent things must be counted as identical with one another, so there is at most one non-existent thing. We might arbitrarily choose zero, or invent 'the null object'.
     From: David Bostock (Intermediate Logic [1997], 8.6)
9. Objects / F. Identity among Objects / 6. Identity between Objects
Two things relate either as same or different, or part of a whole, or the whole of the part [Plato]
     Full Idea: Everything is surely related to everything as follows: either it is the same or different; or, if it is not the same or different, it would be related as part to whole or as whole to part.
     From: Plato (Parmenides [c.364 BCE], 146b)
     A reaction: This strikes me as a really helpful first step in trying to analyse the nature of identity. Two things are either two or (actually) one, or related mereologically.
10. Modality / A. Necessity / 6. Logical Necessity
The idea that anything which can be proved is necessary has a problem with empty names [Bostock]
     Full Idea: The common Rule of Necessitation says that what can be proved is necessary, but this is incorrect if we do not permit empty names. The most straightforward answer is to modify elementary logic so that only necessary truths can be proved.
     From: David Bostock (Intermediate Logic [1997], 8.4)
19. Language / C. Assigning Meanings / 3. Predicates
A (modern) predicate is the result of leaving a gap for the name in a sentence [Bostock]
     Full Idea: A simple way of approaching the modern notion of a predicate is this: given any sentence which contains a name, the result of dropping that name and leaving a gap in its place is a predicate. Very different from predicates in Aristotle and Kant.
     From: David Bostock (Intermediate Logic [1997], 3.2)
     A reaction: This concept derives from Frege. To get to grips with contemporary philosophy you have to relearn all sorts of basic words like 'predicate' and 'object'.
25. Social Practice / E. Policies / 5. Education / c. Teaching
Only a great person can understand the essence of things, and an even greater person can teach it [Plato]
     Full Idea: Only a man of very great natural gifts will be able to understand that everything has a class and absolute essence, and an even more wonderful man can teach this.
     From: Plato (Parmenides [c.364 BCE], 135a)
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / d. The unlimited
The unlimited has no shape and is endless [Plato]
     Full Idea: The unlimited partakes neither of the round nor of the straight, because it has no ends nor edges.
     From: Plato (Parmenides [c.364 BCE], 137e)
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / e. The One
Some things do not partake of the One [Plato]
     Full Idea: The others cannot partake of the one in any way; they can neither partake of it nor of the whole.
     From: Plato (Parmenides [c.364 BCE], 159d)
     A reaction: Compare Idea 231
The only movement possible for the One is in space or in alteration [Plato]
     Full Idea: If the One moves it either moves spatially or it is altered, since these are the only motions.
     From: Plato (Parmenides [c.364 BCE], 138b)
Everything partakes of the One in some way [Plato]
     Full Idea: The others are not altogether deprived of the one, for they partake of it in some way.
     From: Plato (Parmenides [c.364 BCE], 157c)
     A reaction: Compare Idea 233.
28. God / B. Proving God / 2. Proofs of Reason / a. Ontological Proof
We couldn't discuss the non-existence of the One without knowledge of it [Plato]
     Full Idea: There must be knowledge of the one, or else not even the meaning of the words 'if the one does not exist' would be known.
     From: Plato (Parmenides [c.364 BCE], 160d)