Combining Texts

All the ideas for 'Parmenides', 'Principia Mathematica' and 'Nihilism without Self-Contradiction'

unexpand these ideas     |    start again     |     specify just one area for these texts


80 ideas

1. Philosophy / D. Nature of Philosophy / 1. Philosophy
Philosophy must abstract from the senses [Newton]
     Full Idea: In philosophy abstraction from the senses is required.
     From: Isaac Newton (Principia Mathematica [1687], Def 8 Schol)
     A reaction: He particularly means 'natural philosophy' (i.e. science), but there is no real distinction in Newton's time, and I would say this remark is true of modern philosophy.
2. Reason / A. Nature of Reason / 1. On Reason
When questions are doubtful we should concentrate not on objects but on ideas of the intellect [Plato]
     Full Idea: Doubtful questions should not be discussed in terms of visible objects or in relation to them, but only with reference to ideas conceived by the intellect.
     From: Plato (Parmenides [c.364 BCE], 135e)
2. Reason / B. Laws of Thought / 5. Opposites
Opposites are as unlike as possible [Plato]
     Full Idea: Opposites are as unlike as possible.
     From: Plato (Parmenides [c.364 BCE], 159a)
2. Reason / C. Styles of Reason / 1. Dialectic
Plato's 'Parmenides' is the greatest artistic achievement of the ancient dialectic [Hegel on Plato]
     Full Idea: Plato's 'Parmenides' is the greatest artistic achievement of the ancient dialectic.
     From: comment on Plato (Parmenides [c.364 BCE]) by Georg W.F.Hegel - Phenomenology of Spirit Pref 71
     A reaction: It is a long way from the analytic tradition of philosophy to be singling out a classic text for its 'artistic' achievement. Eventually we may even look back on, say, Kripke's 'Naming and Necessity' and see it in that light.
2. Reason / F. Fallacies / 7. Ad Hominem
We should always apply someone's theory of meaning to their own utterances [Liggins]
     Full Idea: We should interpret philosophers as if their own theory of the meaning of their utterances were true, whether or not we agree with that theory.
     From: David Liggins (Nihilism without Self-Contradiction [2008], 8)
     A reaction: This seems to give legitimate grounds for some sorts of ad hominem objections. It would simply be an insult to a philosopher not to believe their theories, and then apply them to what they have said. This includes semantic theories.
5. Theory of Logic / G. Quantification / 6. Plural Quantification
We normally formalise 'There are Fs' with singular quantification and predication, but this may be wrong [Liggins]
     Full Idea: It is quite standard to interpret sentences of the form 'There are Fs' using a singular quantifier and a singular predicate, but this tradition may be mistaken.
     From: David Liggins (Nihilism without Self-Contradiction [2008], 8)
     A reaction: Liggins is clearly in support of the use of plural quantification, referring to 'there are some xs such that'.
5. Theory of Logic / L. Paradox / 3. Antinomies
Plato found antinomies in ideas, Kant in space and time, and Bradley in relations [Plato, by Ryle]
     Full Idea: Plato (in 'Parmenides') shows that the theory that 'Eide' are substances, and Kant that space and time are substances, and Bradley that relations are substances, all lead to aninomies.
     From: report of Plato (Parmenides [c.364 BCE]) by Gilbert Ryle - Are there propositions? 'Objections'
Plato's 'Parmenides' is perhaps the best collection of antinomies ever made [Russell on Plato]
     Full Idea: Plato's 'Parmenides' is perhaps the best collection of antinomies ever made.
     From: comment on Plato (Parmenides [c.364 BCE]) by Bertrand Russell - The Principles of Mathematics §337
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Newton developed a kinematic approach to geometry [Newton, by Kitcher]
     Full Idea: The reduction of the problems of tangents, normals, curvature, maxima and minima were effected by Newton's kinematic approach to geometry.
     From: report of Isaac Newton (Principia Mathematica [1687]) by Philip Kitcher - The Nature of Mathematical Knowledge 10.1
     A reaction: This approach apparently contrasts with that of Leibniz.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
Quantities and ratios which continually converge will eventually become equal [Newton]
     Full Idea: Quantities and the ratios of quantities, which in any finite time converge continually to equality, and, before the end of that time approach nearer to one another by any given difference become ultimately equal.
     From: Isaac Newton (Principia Mathematica [1687], Lemma 1), quoted by Philip Kitcher - The Nature of Mathematical Knowledge 10.2
     A reaction: Kitcher observes that, although Newton relies on infinitesimals, this quotation expresses something close to the later idea of a 'limit'.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
One is, so numbers exist, so endless numbers exist, and each one must partake of being [Plato]
     Full Idea: If one is, there must also necessarily be number - Necessarily - But if there is number, there would be many, and an unlimited multitude of beings. ..So if all partakes of being, each part of number would also partake of it.
     From: Plato (Parmenides [c.364 BCE], 144a)
     A reaction: This seems to commit to numbers having being, then to too many numbers, and hence to too much being - but without backing down and wondering whether numbers had being after all. Aristotle disagreed.
7. Existence / A. Nature of Existence / 3. Being / c. Becoming
The one was and is and will be and was becoming and is becoming and will become [Plato]
     Full Idea: The one was and is and will be and was becoming and is becoming and will become.
     From: Plato (Parmenides [c.364 BCE], 155d)
7. Existence / A. Nature of Existence / 3. Being / f. Primary being
Plato's Parmenides has a three-part theory, of Primal One, a One-Many, and a One-and-Many [Plato, by Plotinus]
     Full Idea: The Platonic Parmenides is more exact [than Parmenides himself]; the distinction is made between the Primal One, a strictly pure Unity, and a secondary One which is a One-Many, and a third which is a One-and-Many.
     From: report of Plato (Parmenides [c.364 BCE]) by Plotinus - The Enneads 5.1.08
     A reaction: Plotinus approves of this three-part theory. Parmenides has the problem that the highest Being contains no movement. By placing the One outside Being you can give it powers which an existent thing cannot have. Cf the concept of God.
7. Existence / D. Theories of Reality / 3. Reality
Absolute ideas, such as the Good and the Beautiful, cannot be known by us [Plato]
     Full Idea: The absolute good and the beautiful and all which we conceive to be absolute ideas are unknown to us.
     From: Plato (Parmenides [c.364 BCE], 134c)
8. Modes of Existence / C. Powers and Dispositions / 2. Powers as Basic
I suspect that each particle of bodies has attractive or repelling forces [Newton]
     Full Idea: Many things lead me to a suspicion that all phenomena may depend on certain forces by which the particles of bodies, by causes not yet known, either are impelled toward one another and cohere in regular figures,or are repelled from one another and recede.
     From: Isaac Newton (Principia Mathematica [1687], Pref)
     A reaction: For Newton, forces are not just abstractions that are convenient for mathematics, but realities which I would say are best described as 'powers'.
8. Modes of Existence / D. Universals / 2. Need for Universals
You must always mean the same thing when you utter the same name [Plato]
     Full Idea: You must always mean the same thing when you utter the same name.
     From: Plato (Parmenides [c.364 BCE], 147d)
If you deny that each thing always stays the same, you destroy the possibility of discussion [Plato]
     Full Idea: If a person denies that the idea of each thing is always the same, he will utterly destroy the power of carrying on discussion.
     From: Plato (Parmenides [c.364 BCE], 135c)
8. Modes of Existence / D. Universals / 6. Platonic Forms / a. Platonic Forms
If admirable things have Forms, maybe everything else does as well [Plato]
     Full Idea: It is troubling that if admirable things have abstract ideas, then perhaps everything else must have ideas as well.
     From: Plato (Parmenides [c.364 BCE], 130d)
If absolute ideas existed in us, they would cease to be absolute [Plato]
     Full Idea: None of the absolute ideas exists in us, because then it would no longer be absolute.
     From: Plato (Parmenides [c.364 BCE], 133c)
Greatness and smallness must exist, to be opposed to one another, and come into being in things [Plato]
     Full Idea: These two ideas, greatness and smallness, exist, do they not? For if they did not exist, they could not be opposites of one another, and could not come into being in things.
     From: Plato (Parmenides [c.364 BCE], 149e)
Plato moves from Forms to a theory of genera and principles in his later work [Plato, by Frede,M]
     Full Idea: It seems to me that Plato in the later dialogues, beginning with the second half of 'Parmenides', wants to substitute a theory of genera and theory of principles that constitute these genera for the earlier theory of forms.
     From: report of Plato (Parmenides [c.364 BCE]) by Michael Frede - Title, Unity, Authenticity of the 'Categories' V
     A reaction: My theory is that the later Plato came under the influence of the brilliant young Aristotle, and this idea is a symptom of it. The theory of 'principles' sounds like hylomorphism to me.
It would be absurd to think there were abstract Forms for vile things like hair, mud and dirt [Plato]
     Full Idea: Are there abstract ideas for such things as hair, mud and dirt, which are particularly vile and worthless? That would be quite absurd.
     From: Plato (Parmenides [c.364 BCE], 130d)
The concept of a master includes the concept of a slave [Plato]
     Full Idea: Mastership in the abstract is mastership of slavery in the abstract.
     From: Plato (Parmenides [c.364 BCE], 133e)
8. Modes of Existence / D. Universals / 6. Platonic Forms / b. Partaking
Participation is not by means of similarity, so we are looking for some other method of participation [Plato]
     Full Idea: Participation is not by means of likeness, so we must seek some other method of participation.
     From: Plato (Parmenides [c.364 BCE], 133a)
The whole idea of each Form must be found in each thing which participates in it [Plato]
     Full Idea: The whole idea of each form (of beauty, justice etc) must be found in each thing which participates in it.
     From: Plato (Parmenides [c.364 BCE], 131a)
Each idea is in all its participants at once, just as daytime is a unity but in many separate places at once [Plato]
     Full Idea: Just as day is in many places at once, but not separated from itself, so each idea might be in all its participants at once.
     From: Plato (Parmenides [c.364 BCE], 131b)
If things are made alike by participating in something, that thing will be the absolute idea [Plato]
     Full Idea: That by participation in which like things are made like, will be the absolute idea, will it not?
     From: Plato (Parmenides [c.364 BCE], 132e)
If things partake of ideas, this implies either that everything thinks, or that everything actually is thought [Plato]
     Full Idea: If all things partake of ideas, must either everything be made of thoughts and everything thinks, or everything is thought, and so can't think?
     From: Plato (Parmenides [c.364 BCE], 132c)
8. Modes of Existence / D. Universals / 6. Platonic Forms / c. Self-predication
If absolute greatness and great things are seen as the same, another thing appears which makes them seem great [Plato]
     Full Idea: If you regard the absolute great and the many great things in the same way, will not another appear beyond, by which all these must appear to be great?
     From: Plato (Parmenides [c.364 BCE], 132a)
Nothing can be like an absolute idea, because a third idea intervenes to make them alike (leading to a regress) [Plato]
     Full Idea: It is impossible for anything to be like an absolute idea, because a third idea will appear to make them alike, and if that is like anything, it will lead to another idea, and so on.
     From: Plato (Parmenides [c.364 BCE], 133a)
9. Objects / B. Unity of Objects / 1. Unifying an Object / b. Unifying aggregates
Parts must belong to a created thing with a distinct form [Plato]
     Full Idea: The part would not be the part of many things or all, but of some one character ['ideas'] and of some one thing, which we call a 'whole', since it has come to be one complete [perfected] thing composed [created] of all.
     From: Plato (Parmenides [c.364 BCE], 157d)
     A reaction: A serious shot by Plato at what identity is. Harte quotes it (125) and shows that 'character' is Gk 'idea', and 'composed' will translate as 'created'. 'Form' links this Platonic passage to Aristotle's hylomorphism.
Particles mutually attract, and cohere at short distances [Newton]
     Full Idea: The particles of bodies attract one another at very small distances and cohere when they become contiguous.
     From: Isaac Newton (Principia Mathematica [1687], Bk 3 Gen Schol)
     A reaction: This is the sort of account of unity which has to be given in the corpuscular view of things, once substantial forms are given up. What is missing here is the structure of the thing. A lump of dirt is as unified as a cat in this story.
9. Objects / C. Structure of Objects / 5. Composition of an Object
In Parmenides, if composition is identity, a whole is nothing more than its parts [Plato, by Harte,V]
     Full Idea: At the heart of the 'Parmenides' puzzles about composition is the thesis that composition is identity. Considered thus, a whole adds nothing to an ontology that already includes its parts
     From: report of Plato (Parmenides [c.364 BCE]) by Verity Harte - Plato on Parts and Wholes 2.5
     A reaction: There has to be more to a unified identity that mere proximity of the parts. When do parts come together, and when do they actually 'compose' something?
9. Objects / C. Structure of Objects / 8. Parts of Objects / a. Parts of objects
Plato says only a one has parts, and a many does not [Plato, by Harte,V]
     Full Idea: In 'Parmenides' it is argued that a part cannot be part of a many, but must be part of something one.
     From: report of Plato (Parmenides [c.364 BCE], 157c) by Verity Harte - Plato on Parts and Wholes 3.2
     A reaction: This looks like the right way to go with the term 'part'. We presuppose a unity before we even talk of its parts, so we can't get into contradictions and paradoxes about their relationships.
Anything which has parts must be one thing, and parts are of a one, not of a many [Plato]
     Full Idea: The whole of which the parts are parts must be one thing composed of many; for each of the parts must be part, not of a many, but of a whole.
     From: Plato (Parmenides [c.364 BCE], 157c)
     A reaction: This is a key move of metaphysics, and we should hang on to it. The other way madness lies.
Nihilists needn't deny parts - they can just say that some of the xs are among the ys [Liggins]
     Full Idea: We can interpret '..is a part of..' as '..are among..': the xs are a part of the ys just when the xs are among the ys (though if the ys are 'one' then they would not have parts).
     From: David Liggins (Nihilism without Self-Contradiction [2008], 9)
     A reaction: The trouble is that this still leaves us with gerrymandered 'parts', in the form of xs that are scattered randomly among the ys. That's not what we mean by 'part'. No account of identity works if it leaves out coherent structure.
9. Objects / C. Structure of Objects / 8. Parts of Objects / b. Sums of parts
The place of a thing is the sum of the places of its parts [Newton]
     Full Idea: The place of a whole is the same as the sum of the places of the parts, and is therefore internal and in the whole body.
     From: Isaac Newton (Principia Mathematica [1687], Def 8 Schol)
     A reaction: Note that Newton is talking of the sums of places, and deriving them from the parts. This is the mereology of space.
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
It seems that the One must be composed of parts, which contradicts its being one [Plato]
     Full Idea: The One must be composed of parts, both being a whole and having parts. So on both grounds the One would thus be many and not one. But it must be not many, but one. So if the One will be one, it will neither be a whole, nor have parts.
     From: Plato (Parmenides [c.364 BCE], 137c09), quoted by Kathrin Koslicki - The Structure of Objects 5.2
     A reaction: This is the starting point for Plato's metaphysical discussion of objects. It seems to begin a line of thought which is completed by Aristotle, surmising that only an essential structure can bestow identity on a bunch of parts.
9. Objects / F. Identity among Objects / 6. Identity between Objects
Two things relate either as same or different, or part of a whole, or the whole of the part [Plato]
     Full Idea: Everything is surely related to everything as follows: either it is the same or different; or, if it is not the same or different, it would be related as part to whole or as whole to part.
     From: Plato (Parmenides [c.364 BCE], 146b)
     A reaction: This strikes me as a really helpful first step in trying to analyse the nature of identity. Two things are either two or (actually) one, or related mereologically.
14. Science / B. Scientific Theories / 6. Theory Holism
If you changed one of Newton's concepts you would destroy his whole system [Heisenberg on Newton]
     Full Idea: The connection between the different concept in [Newton's] system is so close that one could generally not change any one of the concepts without destroying the whole system
     From: comment on Isaac Newton (Principia Mathematica [1687]) by Werner Heisenberg - Physics and Philosophy 06
     A reaction: This holistic situation would seem to count against Newton's system, rather than for it. A good system should depend on nature, not on other parts of the system. Compare changing a rule of chess.
14. Science / C. Induction / 1. Induction
Science deduces propositions from phenomena, and generalises them by induction [Newton]
     Full Idea: In experimental philosophy, propositions are deduced from the phenomena and are made general by induction.
     From: Isaac Newton (Principia Mathematica [1687], Bk 3 Gen Schol)
     A reaction: Sounds easy, but generalising by induction requires all sorts of assumptions about the stability of natural kinds. Since the kinds are only arrived at by induction, it is not easy to give a proper account here.
14. Science / D. Explanation / 2. Types of Explanation / g. Causal explanations
We should admit only enough causes to explain a phenomenon, and no more [Newton]
     Full Idea: No more causes of natural things should be admitted than are both true and sufficient to explain the phenomena. …For nature does nothing in vain, …and nature is simple and does not indulge in the luxury of superfluous causes.
     From: Isaac Newton (Principia Mathematica [1687], Bk 3 Rule 1)
     A reaction: This emphasises that Ockham's Razor is a rule for physical explanation, and not just one for abstract theories. This is something like Van Fraassen's 'empirical adequacy'.
Natural effects of the same kind should be assumed to have the same causes [Newton]
     Full Idea: The causes assigned to natural effects of the same kind must be, so far as possible, the same. For example, the cause of respiration in man and beast.
     From: Isaac Newton (Principia Mathematica [1687], Bk 3 Rule 2)
     A reaction: It is impossible to rule out identical effects from differing causes, but explanation gets much more exciting (because wide-ranging) if Newton's rule is assumed.
14. Science / D. Explanation / 2. Types of Explanation / k. Explanations by essence
From the phenomena, I can't deduce the reason for the properties of gravity [Newton]
     Full Idea: I have not as yet been able to deduce from the phenomena the reason for the properties of gravity.
     From: Isaac Newton (Principia Mathematica [1687], Bk 3 Gen Schol)
     A reaction: I take it that giving the reasons for the properties of gravity would be an essentialist explanation. I am struck by the fact that the recent discovery of the Higgs Boson appears to give us a reason why things have mass (i.e. what causes mass).
25. Social Practice / E. Policies / 5. Education / c. Teaching
Only a great person can understand the essence of things, and an even greater person can teach it [Plato]
     Full Idea: Only a man of very great natural gifts will be able to understand that everything has a class and absolute essence, and an even more wonderful man can teach this.
     From: Plato (Parmenides [c.364 BCE], 135a)
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / c. Ultimate substances
Newton's four fundamentals are: space, time, matter and force [Newton, by Russell]
     Full Idea: Newton works with four fundamental concepts: space, time, matter and force.
     From: report of Isaac Newton (Principia Mathematica [1687]) by Bertrand Russell - My Philosophical Development Ch.2
     A reaction: The ontological challenge is to reduce these in number, presumably. They are, notoriously, defined in terms of one another.
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / d. The unlimited
The unlimited has no shape and is endless [Plato]
     Full Idea: The unlimited partakes neither of the round nor of the straight, because it has no ends nor edges.
     From: Plato (Parmenides [c.364 BCE], 137e)
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / e. The One
Some things do not partake of the One [Plato]
     Full Idea: The others cannot partake of the one in any way; they can neither partake of it nor of the whole.
     From: Plato (Parmenides [c.364 BCE], 159d)
     A reaction: Compare Idea 231
The only movement possible for the One is in space or in alteration [Plato]
     Full Idea: If the One moves it either moves spatially or it is altered, since these are the only motions.
     From: Plato (Parmenides [c.364 BCE], 138b)
Everything partakes of the One in some way [Plato]
     Full Idea: The others are not altogether deprived of the one, for they partake of it in some way.
     From: Plato (Parmenides [c.364 BCE], 157c)
     A reaction: Compare Idea 233.
26. Natural Theory / A. Speculations on Nature / 7. Later Matter Theories / a. Early Modern matter
Mass is central to matter [Newton, by Hart,WD]
     Full Idea: For Newton, mass is central to matter.
     From: report of Isaac Newton (Principia Mathematica [1687]) by William D. Hart - The Evolution of Logic 2
     A reaction: On reading this, I realise that this is the concept of matter I have grown up with, one which makes it very hard to grasp what the Greeks were thinking of when they referred to matter [hule].
26. Natural Theory / A. Speculations on Nature / 7. Later Matter Theories / b. Corpuscles
An attraction of a body is the sum of the forces of their particles [Newton]
     Full Idea: The attractions of the bodies must be reckoned by assigning proper forces to their individual particles and then taking the sums of those forces.
     From: Isaac Newton (Principia Mathematica [1687], 1.II.Schol)
     A reaction: This is using the parts of bodies to give fundamental explanations, rather than invoking substantial forms. The parts need not be atoms.
26. Natural Theory / C. Causation / 1. Causation
Newtonian causation is changes of motion resulting from collisions [Newton, by Baron/Miller]
     Full Idea: In the Newtonian mechanistic theory of causation, ….something causes a result when it brings about a change of motion. …Causation is a matter of things bumping into one another.
     From: report of Isaac Newton (Principia Mathematica [1687]) by Baron,S/Miller,K - Intro to the Philosophy of Time 6.2.1
     A reaction: This seems to need impenetrability and elasticity as primitives (which is partly what Leibniz's monads are meant to explain). The authors observe that much causation is the result of existences and qualities, rather than motions.
26. Natural Theory / D. Laws of Nature / 6. Laws as Numerical
You have discovered that elliptical orbits result just from gravitation and planetary movement [Newton, by Leibniz]
     Full Idea: You have made the astonishing discovery that Kepler's ellipses result simply from the conception of attraction or gravitation and passage in a planet.
     From: report of Isaac Newton (Principia Mathematica [1687]) by Gottfried Leibniz - Letter to Newton 1693.03.07
     A reaction: I quote this to show that Newton made 'an astonishing discovery' of a connection in nature, and did not merely produce an equation which described a pattern of behaviour. The simple equation is the proof of the connection.
We have given up substantial forms, and now aim for mathematical laws [Newton]
     Full Idea: The moderns - rejecting substantial forms and occult qualities - have undertaken to reduce the phenomena of nature to mathematical laws.
     From: Isaac Newton (Principia Mathematica [1687], Preface)
     A reaction: This is the simplest statement of the apparent anti-Aristotelian revolution in the seventeenth century.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / c. Essence and laws
I am not saying gravity is essential to bodies [Newton]
     Full Idea: I am by no means asserting that gravity is essential to bodies.
     From: Isaac Newton (Principia Mathematica [1687], Bk 3 Rule 3)
     A reaction: Notice that in Idea 17009 he does not rule out gravity being essential to bodies. This is Newton's intellectual modesty (for which he is not famous).
27. Natural Reality / A. Classical Physics / 1. Mechanics / a. Explaining movement
Newton reclassified vertical motion as violent, and unconstrained horizontal motion as natural [Newton, by Harré]
     Full Idea: Following Kepler, Newton assumed a law of universal gravitation, thus reclassifying free fall as a violent motion and, with his First Law, fixing horizontal motion in the absence of constraints as natural
     From: report of Isaac Newton (Principia Mathematica [1687]) by Rom Harré - Laws of Nature 1
     A reaction: This is in opposition to the Aristotelian view, where the downward motion of physical objects is their natural motion.
27. Natural Reality / A. Classical Physics / 1. Mechanics / b. Laws of motion
Inertia rejects the Aristotelian idea of things having natural states, to which they return [Newton, by Alexander,P]
     Full Idea: Newton's principle of inertia implies a rejection of the Aristotelian idea of natural states to which things naturally return.
     From: report of Isaac Newton (Principia Mathematica [1687]) by Peter Alexander - Ideas, Qualities and Corpuscles 02.3
     A reaction: I think we can safely say that Aristotle was wrong about this. Aristotle made too much (such as the gravity acting on a thing) intrinsic to the bodies, when the whole context must be seen.
1: Bodies rest, or move in straight lines, unless acted on by forces [Newton]
     Full Idea: Law 1: Every body perseveres in its state of being at rest or of moving uniformly straight forward, except insofar as it is compelled to change its state by forces impressed.
     From: Isaac Newton (Principia Mathematica [1687], Axioms)
     A reaction: This is the new concept of inertia, which revolutionises the picture. Motion itself, which was a profound puzzle for the Greeks, ceases to be a problem by being axiomatised. It is now acceleration which is the the problem.
2: Change of motion is proportional to the force [Newton]
     Full Idea: Law 2: A change in motion is proportional to the motive force impressed and takes place along the straight line in which that force is impressed.
     From: Isaac Newton (Principia Mathematica [1687], Axioms)
     A reaction: This gives the equation 'force = mass x acceleration', where the mass is the constant needed for the equation of proportion. Effectively mass is just the value of a proportion.
3: All actions of bodies have an equal and opposite reaction [Newton]
     Full Idea: Law 3: To any action there is always an opposite and equal reaction; in other words, the action of two bodies upon each other are always equal and always opposite in direction.
     From: Isaac Newton (Principia Mathematica [1687], Axioms)
     A reaction: Is this still true if one body is dented by the impact and the other one isn't? What counts as a 'body'?
Newton's Third Law implies the conservation of momentum [Newton, by Papineau]
     Full Idea: Newton's Third Law implies the conservation of momentum, because 'action and reaction' are always equal.
     From: report of Isaac Newton (Principia Mathematica [1687]) by David Papineau - Thinking about Consciousness App 3
     A reaction: That is, the Third Law implies the First Law (which is the Law of Momentum).
27. Natural Reality / A. Classical Physics / 1. Mechanics / c. Forces
Newton's idea of force acting over a long distance was very strange [Heisenberg on Newton]
     Full Idea: Newton introduced a very new and strange hypothesis by assuming a force that acted over a long distance.
     From: comment on Isaac Newton (Principia Mathematica [1687]) by Werner Heisenberg - Physics and Philosophy 06
     A reaction: Why would a force that acted over a short distance be any less mysterious?
Newton introduced forces other than by contact [Newton, by Papineau]
     Full Idea: Newton allowed forces other than impact. All the earlier proponents of 'mechanical philosophy' took it as given that all physical action is by contact. ...He thought of 'impressed force' - disembodied entities acting from outside a body.
     From: report of Isaac Newton (Principia Mathematica [1687]) by David Papineau - Thinking about Consciousness App 3
     A reaction: This is 'action at a distance', which was as bewildering then as quantum theory is now. Newton had a divinity to impose laws of nature from the outside. In some ways we have moved back to the old view, with the actions of bosons and fields.
Newton's laws cover the effects of forces, but not their causes [Newton, by Papineau]
     Full Idea: Newton has a general law about the effects of his forces, ...but there is no corresponding general principle about the causes of such forces.
     From: report of Isaac Newton (Principia Mathematica [1687]) by David Papineau - Thinking about Consciousness App 3
     A reaction: I'm not sure that Einstein gives a cause of gravity either. This seems to be part of the scientific 'instrumentalist' view of nature, which is incredibly useful but very superficial.
Newton's forces were accused of being the scholastics' real qualities [Pasnau on Newton]
     Full Idea: Newton's reliance on the notion of force was widely criticised as marking in effect a return to real qualities.
     From: comment on Isaac Newton (Principia Mathematica [1687]) by Robert Pasnau - Metaphysical Themes 1274-1671 19.7
     A reaction: The objection is to forces that are separate from the bodies they act on. This is one of the reasons why modern metaphysics needs the concept of an intrinsic disposition or power, placing the forces in the stuff.
I am studying the quantities and mathematics of forces, not their species or qualities [Newton]
     Full Idea: I consider in this treatise not the species of forces and their physical qualities, but their quantities and mathematical proportions.
     From: Isaac Newton (Principia Mathematica [1687], 1.1.11 Sch)
     A reaction: Note that Newton is not denying that one might contemplate the species and qualities of forces, as I think Leibniz tried to do, thought he didn't cast any detailed light on them. It is the gap between science and metaphysics.
The aim is to discover forces from motions, and use forces to demonstrate other phenomena [Newton]
     Full Idea: The basic problem of philosophy seems to be to discover the forces of nature from the phenomena of motions and then to demonstrate the other phenomena from these forces.
     From: Isaac Newton (Principia Mathematica [1687], Pref 1st ed), quoted by Daniel Garber - Leibniz:Body,Substance,Monad 4
     A reaction: This fits in with the description-of-regularity approach to laws which Newton had acquired from Galileo, rather than the essentialist attitude to forces of Leibniz, though Newton has smatterings of essentialism.
27. Natural Reality / A. Classical Physics / 1. Mechanics / d. Gravity
Newton showed that falling to earth and orbiting the sun are essentially the same [Newton, by Ellis]
     Full Idea: Newton showed that the apparently different kinds of processes of falling towards the earth and orbiting the sun are essentially the same.
     From: report of Isaac Newton (Principia Mathematica [1687]) by Brian Ellis - Scientific Essentialism 3.08
     A reaction: I quote this to illustrate Newton's permanent achievement in science, in the face of a tendency to say that he was 'outmoded' by the advent of General Relativity. Newton wasn't interestingly wrong. He was very very right.
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / c. Conservation of energy
Early Newtonians could not formulate conservation of energy, having no concept of potential energy [Newton, by Papineau]
     Full Idea: A barrier to the formulation of an energy conservation principle by early Newtonians was their lack of a notion of potential energy.
     From: report of Isaac Newton (Principia Mathematica [1687]) by David Papineau - Thinking about Consciousness App 3 n5
     A reaction: Interestingly, the notions of potentiality and actuality were central to Aristotle, but Newtonians had just rejected all of that.
27. Natural Reality / C. Space / 4. Substantival Space
Absolute space is independent, homogeneous and immovable [Newton]
     Full Idea: Absolute space, of its own nature without reference to anything external, always remains homogeneous and immovable.
     From: Isaac Newton (Principia Mathematica [1687], Def 8 Schol)
     A reaction: This would have to be a stipulation, rather than an assertion of fact, since whether space is 'immovable' is either incoherent or unknowable.
27. Natural Reality / D. Time / 1. Nature of Time / a. Absolute time
Newton needs intervals of time, to define velocity and acceleration [Newton, by Le Poidevin]
     Full Idea: Both Newton's First and Second Laws of motion make implicit reference to equal intervals of time. For a body is moving with constant velocity if it covers the same distance in a series of equal intervals (and similarly with acceleration).
     From: report of Isaac Newton (Principia Mathematica [1687]) by Robin Le Poidevin - Travels in Four Dimensions 01 'Time'
     A reaction: [Le Poidevin spells out the acceleration point] You can see why he needs time to be real, if measured chunks of it figure in his laws.
Newton thought his laws of motion needed absolute time [Newton, by Bardon]
     Full Idea: Newton's reason for embracing absolute space, time and motion was that he thought that universal laws of motions were describable only in such terms. Because actual motions are irregular, the time of universal laws of motion cannot depend on them.
     From: report of Isaac Newton (Principia Mathematica [1687]) by Adrian Bardon - Brief History of the Philosophy of Time 3 'Replacing'
     A reaction: I'm not sure of the Einsteinian account of the laws of motion.
Time exists independently, and flows uniformly [Newton]
     Full Idea: Absolute, true, and mathematical time, in and of itself and of its own nature, without reference to anything external, flows uniformly and by another name is called duration.
     From: Isaac Newton (Principia Mathematica [1687], Def 8 Schol)
     A reaction: This invites the notorious question of, if time flows uniformly, how fast time flows. Maybe we should bite the bullet and say 'one second per second', or maybe we should say 'this fact is beyond our powers of comprehension'.
Absolute time, from its own nature, flows equably, without relation to anything external [Newton]
     Full Idea: Absolute, true, and mathematical time, of itself, and from its own nature, flows equably, without relation to anything external.
     From: Isaac Newton (Principia Mathematica [1687], I:Schol after defs), quoted by Craig Bourne - A Future for Presentism 5.1
     A reaction: I agree totally with this, and I don't care what any modern relativity theorists say. It think Shoemaker's argument gives wonderful support to Newton.
27. Natural Reality / D. Time / 2. Passage of Time / g. Time's arrow
Newtonian mechanics does not distinguish negative from positive values of time [Newton, by Coveney/Highfield]
     Full Idea: In Newton's laws of motion time is squared, so a negative value gives the same result as a positive value, which means Newtonian mechanics cannot distinguish between the two directions of time.
     From: report of Isaac Newton (Principia Mathematica [1687]) by P Coveney / R Highfield - The Arrow of Time 2 'anatomy'
     A reaction: Maybe Newton just forgot to mention that negative values were excluded. (Or was he unaware of the sequence of negative integers?). Too late now - he's done it.
27. Natural Reality / D. Time / 3. Parts of Time / d. Measuring time
If there is no uniform motion, we cannot exactly measure time [Newton]
     Full Idea: It is possible that there is no uniform motion by which time may have an exact measure. All motions can be accelerated and retarded, but the flow of absolute time cannot be changed.
     From: Isaac Newton (Principia Mathematica [1687], Def 8 Schol)
28. God / A. Divine Nature / 3. Divine Perfections
If a perfect being does not rule the cosmos, it is not God [Newton]
     Full Idea: A being, however perfect, without dominion is not the Lord God.
     From: Isaac Newton (Principia Mathematica [1687], Bk 3 Gen Schol)
28. God / B. Proving God / 2. Proofs of Reason / a. Ontological Proof
We couldn't discuss the non-existence of the One without knowledge of it [Plato]
     Full Idea: There must be knowledge of the one, or else not even the meaning of the words 'if the one does not exist' would be known.
     From: Plato (Parmenides [c.364 BCE], 160d)
28. God / B. Proving God / 3. Proofs of Evidence / b. Teleological Proof
The elegance of the solar system requires a powerful intellect as designer [Newton]
     Full Idea: This most elegant system of the sun, planets, and comets could not have arisen without the design and dominion of an intelligent and powerful being.
     From: Isaac Newton (Principia Mathematica [1687], Bk 3 Gen Schol)