Combining Texts

All the ideas for 'works', 'On Formally Undecidable Propositions' and 'Of liberty, Fate and God's grace'

unexpand these ideas     |    start again     |     specify just one area for these texts


49 ideas

1. Philosophy / A. Wisdom / 1. Nature of Wisdom
For Plato true wisdom is supernatural [Plato, by Weil]
     Full Idea: It is evident that Plato regards true wisdom as something supernatural.
     From: report of Plato (works [c.375 BCE]) by Simone Weil - God in Plato p.61
     A reaction: Taken literally, I assume this is wrong, but we can empathise with the thought. Wisdom has the feeling of rising above the level of mere knowledge, to achieve the overview I associate with philosophy.
1. Philosophy / C. History of Philosophy / 2. Ancient Philosophy / b. Pre-Socratic philosophy
Plato never mentions Democritus, and wished to burn his books [Plato, by Diog. Laertius]
     Full Idea: Plato, who mentions nearly all the ancient philosophers, nowhere speaks of Democritus; he wished to burn all of his books, but was persuaded that it was futile.
     From: report of Plato (works [c.375 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.7.8
2. Reason / C. Styles of Reason / 1. Dialectic
Two contradictories force us to find a relation which will correlate them [Plato, by Weil]
     Full Idea: Where contradictions appear there is a correlation of contraries, which is relation. If a contradiction is imposed on the intelligence, it is forced to think of a relation to transform the contradiction into a correlation, which draws the soul higher.
     From: report of Plato (works [c.375 BCE]) by Simone Weil - God in Plato p.70
     A reaction: A much better account of the dialectic than anything I have yet seen in Hegel. For the first time I see some sense in it. A contradiction is not a falsehood, and it must be addressed rather than side-stepped. A kink in the system, that needs ironing.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
Prior to Gödel we thought truth in mathematics consisted in provability [Gödel, by Quine]
     Full Idea: Gödel's proof wrought an abrupt turn in the philosophy of mathematics. We had supposed that truth, in mathematics, consisted in provability.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Willard Quine - Forward to Gödel's Unpublished
     A reaction: This explains the crisis in the early 1930s, which Tarski's theory appeared to solve.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Gödel show that the incompleteness of set theory was a necessity [Gödel, by Hallett,M]
     Full Idea: Gödel's incompleteness results of 1931 show that all axiom systems precise enough to satisfy Hilbert's conception are necessarily incomplete.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Michael Hallett - Introduction to Zermelo's 1930 paper p.1215
     A reaction: [Hallett italicises 'necessarily'] Hilbert axioms have to be recursive - that is, everything in the system must track back to them.
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The limitations of axiomatisation were revealed by the incompleteness theorems [Gödel, by Koellner]
     Full Idea: The inherent limitations of the axiomatic method were first brought to light by the incompleteness theorems.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Koellner - On the Question of Absolute Undecidability 1.1
5. Theory of Logic / K. Features of Logics / 2. Consistency
Second Incompleteness: nice theories can't prove their own consistency [Gödel, by Smith,P]
     Full Idea: Second Incompleteness Theorem: roughly, nice theories that include enough basic arithmetic can't prove their own consistency.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 1.5
     A reaction: On the face of it, this sounds less surprising than the First Theorem. Philosophers have often noticed that it seems unlikely that you could use reason to prove reason, as when Descartes just relies on 'clear and distinct ideas'.
5. Theory of Logic / K. Features of Logics / 3. Soundness
If soundness can't be proved internally, 'reflection principles' can be added to assert soundness [Gödel, by Halbach/Leigh]
     Full Idea: Gödel showed PA cannot be proved consistent from with PA. But 'reflection principles' can be added, which are axioms partially expressing the soundness of PA, by asserting what is provable. A Global Reflection Principle asserts full soundness.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Halbach,V/Leigh,G.E. - Axiomatic Theories of Truth (2013 ver) 1.2
     A reaction: The authors point out that this needs a truth predicate within the language, so disquotational truth won't do, and there is a motivation for an axiomatic theory of truth.
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Gödel's First Theorem sabotages logicism, and the Second sabotages Hilbert's Programme [Smith,P on Gödel]
     Full Idea: Where Gödel's First Theorem sabotages logicist ambitions, the Second Theorem sabotages Hilbert's Programme.
     From: comment on Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 36
     A reaction: Neo-logicism (Crispin Wright etc.) has a strategy for evading the First Theorem.
The undecidable sentence can be decided at a 'higher' level in the system [Gödel]
     Full Idea: My undecidable arithmetical sentence ...is not at all absolutely undecidable; rather, one can always pass to 'higher' systems in which the sentence in question is decidable.
     From: Kurt Gödel (On Formally Undecidable Propositions [1931]), quoted by Peter Koellner - On the Question of Absolute Undecidability 1.1
     A reaction: [a 1931 MS] He says the reals are 'higher' than the naturals, and the axioms of set theory are higher still. The addition of a truth predicate is part of what makes the sentence become decidable.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
There can be no single consistent theory from which all mathematical truths can be derived [Gödel, by George/Velleman]
     Full Idea: Gödel's far-reaching work on the nature of logic and formal systems reveals that there can be no single consistent theory from which all mathematical truths can be derived.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.8
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Gödel showed that arithmetic is either incomplete or inconsistent [Gödel, by Rey]
     Full Idea: Gödel's theorem states that either arithmetic is incomplete, or it is inconsistent.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Georges Rey - Contemporary Philosophy of Mind 8.7
First Incompleteness: arithmetic must always be incomplete [Gödel, by Smith,P]
     Full Idea: First Incompleteness Theorem: any properly axiomatised and consistent theory of basic arithmetic must remain incomplete, whatever our efforts to complete it by throwing further axioms into the mix.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 1.2
     A reaction: This is because it is always possible to formulate a well-formed sentence which is not provable within the theory.
Arithmetical truth cannot be fully and formally derived from axioms and inference rules [Gödel, by Nagel/Newman]
     Full Idea: The vast continent of arithmetical truth cannot be brought into systematic order by laying down a fixed set of axioms and rules of inference from which every true mathematical statement can be formally derived. For some this was a shocking revelation.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by E Nagel / JR Newman - Gödel's Proof VII.C
     A reaction: Good news for philosophy, I'd say. The truth cannot be worked out by mechanical procedures, so it needs the subtle and intuitive intelligence of your proper philosopher (Parmenides is the role model) to actually understand reality.
Gödel's Second says that semantic consequence outruns provability [Gödel, by Hanna]
     Full Idea: Gödel's Second Incompleteness Theorem says that true unprovable sentences are clearly semantic consequences of the axioms in the sense that they are necessarily true if the axioms are true. So semantic consequence outruns provability.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Robert Hanna - Rationality and Logic 5.3
First Incompleteness: a decent consistent system is syntactically incomplete [Gödel, by George/Velleman]
     Full Idea: First Incompleteness Theorem: If S is a sufficiently powerful formal system, then if S is consistent then S is syntactically incomplete.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: Gödel found a single sentence, effectively saying 'I am unprovable in S', which is neither provable nor refutable in S.
Second Incompleteness: a decent consistent system can't prove its own consistency [Gödel, by George/Velleman]
     Full Idea: Second Incompleteness Theorem: If S is a sufficiently powerful formal system, then if S is consistent then S cannot prove its own consistency
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: This seems much less surprising than the First Theorem (though it derives from it). It was always kind of obvious that you couldn't use reason to prove that reason works (see, for example, the Cartesian Circle).
There is a sentence which a theory can show is true iff it is unprovable [Gödel, by Smith,P]
     Full Idea: The original Gödel construction gives us a sentence that a theory shows is true if and only if it satisfies the condition of being unprovable-in-that-theory.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 20.5
'This system can't prove this statement' makes it unprovable either way [Gödel, by Clegg]
     Full Idea: An approximation of Gödel's Theorem imagines a statement 'This system of mathematics can't prove this statement true'. If the system proves the statement, then it can't prove it. If the statement can't prove the statement, clearly it still can't prove it.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.15
     A reaction: Gödel's contribution to this simple idea seems to be a demonstration that formal arithmetic is capable of expressing such a statement.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Realists are happy with impredicative definitions, which describe entities in terms of other existing entities [Gödel, by Shapiro]
     Full Idea: Gödel defended impredicative definitions on grounds of ontological realism. From that perspective, an impredicative definition is a description of an existing entity with reference to other existing entities.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Stewart Shapiro - Thinking About Mathematics 5.3
     A reaction: This is why constructivists must be absolutely precise about definition, where realists only have to do their best. Compare building a car with painting a landscape.
8. Modes of Existence / A. Relations / 3. Structural Relations
Plato's idea of 'structure' tends to be mathematically expressed [Plato, by Koslicki]
     Full Idea: 'Structure' tends to be characterized by Plato as something that is mathematically expressed.
     From: report of Plato (works [c.375 BCE]) by Kathrin Koslicki - The Structure of Objects V.3 iv
     A reaction: [Koslicki is drawing on Verity Harte here]
8. Modes of Existence / D. Universals / 6. Platonic Forms / a. Platonic Forms
Plato's Forms meant that the sophists only taught the appearance of wisdom and virtue [Plato, by Nehamas]
     Full Idea: Plato's theory of Forms allowed him to claim that the sophists and other opponents were trapped in the world of appearance. What they therefore taught was only apparent wisdom and virtue.
     From: report of Plato (works [c.375 BCE]) by Alexander Nehamas - Eristic,Antilogic,Sophistic,Dialectic p.118
When Diogenes said he could only see objects but not their forms, Plato said it was because he had eyes but no intellect [Plato, by Diog. Laertius]
     Full Idea: When Diogenes told Plato he saw tables and cups, but not 'tableness' and 'cupness', Plato replied that this was because Diogenes had eyes but no intellect.
     From: report of Plato (works [c.375 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 06.2.6
Platonists argue for the indivisible triangle-in-itself [Plato, by Aristotle]
     Full Idea: The Platonists, on the basis of purely logical arguments, posit the existence of an indivisible 'triangle in itself'.
     From: report of Plato (works [c.375 BCE]) by Aristotle - Coming-to-be and Passing-away (Gen/Corr) 316a15
     A reaction: A helpful confirmation that geometrical figures really are among the Forms (bearing in mind that numbers are not, because they contain one another). What shape is the Form of the triangle?
8. Modes of Existence / D. Universals / 6. Platonic Forms / b. Partaking
If there is one Form for both the Form and its participants, they must have something in common [Aristotle on Plato]
     Full Idea: If there is the same Form for the Forms and for their participants, then they must have something in common.
     From: comment on Plato (works [c.375 BCE]) by Aristotle - Metaphysics 991a
8. Modes of Existence / D. Universals / 6. Platonic Forms / c. Self-predication
If gods are like men, they are just eternal men; similarly, Forms must differ from particulars [Aristotle on Plato]
     Full Idea: We say there is the form of man, horse and health, but nothing else, making the same mistake as those who say that there are gods but that they are in the form of men. They just posit eternal men, and here we are not positing forms but eternal sensibles.
     From: comment on Plato (works [c.375 BCE]) by Aristotle - Metaphysics 997b
8. Modes of Existence / D. Universals / 6. Platonic Forms / d. Forms critiques
A Form is a cause of things only in the way that white mixed with white is a cause [Aristotle on Plato]
     Full Idea: A Form is a cause of things only in the way that white mixed with white is a cause.
     From: comment on Plato (works [c.375 BCE]) by Aristotle - Metaphysics 991a
The Forms cannot be changeless if they are in changing things [Aristotle on Plato]
     Full Idea: The Forms could not be changeless if they were in changing things.
     From: comment on Plato (works [c.375 BCE]) by Aristotle - Metaphysics 998a
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
The greatest discovery in human thought is Plato's discovery of abstract objects [Brown,JR on Plato]
     Full Idea: The greatest discovery in the history of human thought is Plato's discovery of abstract objects.
     From: comment on Plato (works [c.375 BCE]) by James Robert Brown - Philosophy of Mathematics Ch. 2
     A reaction: Compare Idea 2860! Given the diametrically opposed views, it is clearly likely that Plato's central view is the most important idea in the history of human thought, even if it is wrong.
9. Objects / A. Existence of Objects / 5. Individuation / a. Individuation
We can grasp whole things in science, because they have a mathematics and a teleology [Plato, by Koslicki]
     Full Idea: Due to the mathematical nature of structure and the teleological cause underlying the creation of Platonic wholes, these wholes are intelligible, and are in fact the proper objects of science.
     From: report of Plato (works [c.375 BCE]) by Kathrin Koslicki - The Structure of Objects 5.3
     A reaction: I like this idea, because it pays attention to the connection between how we conceive objects to be, and how we are able to think about objects. Only examining these two together enables us to grasp metaphysics.
9. Objects / B. Unity of Objects / 1. Unifying an Object / a. Intrinsic unification
Plato sees an object's structure as expressible in mathematics [Plato, by Koslicki]
     Full Idea: The 'structure' of an object tends to be characterised by Plato as something that is mathematically expressible.
     From: report of Plato (works [c.375 BCE]) by Kathrin Koslicki - The Structure of Objects 5.3
     A reaction: This seems to be pure Pythagoreanism (see Idea 644). Plato is pursuing Pythagoras's research programme, of trying to find mathematics buried in every aspect of reality.
Plato was less concerned than Aristotle with the source of unity in a complex object [Plato, by Koslicki]
     Full Idea: Plato was less concerned than Aristotle with the project of how to account, in completely general terms, for the source of unity within a mereologically complex object.
     From: report of Plato (works [c.375 BCE]) by Kathrin Koslicki - The Structure of Objects 5.5
     A reaction: Plato seems to have simply asserted that some sort of harmony held things together. Aristotles puts the forms [eidos] within objects, rather than external, so he has to give a fuller account of what is going on in an object. He never managed it!
9. Objects / B. Unity of Objects / 2. Substance / c. Types of substance
Plato's holds that there are three substances: Forms, mathematical entities, and perceptible bodies [Plato, by Aristotle]
     Full Idea: Plato's doctrine was that the Forms and mathematicals are two substances and that the third substance is that of perceptible bodies.
     From: report of Plato (works [c.375 BCE]) by Aristotle - Metaphysics 1028b
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
Plato says wholes are either containers, or they're atomic, or they don't exist [Plato, by Koslicki]
     Full Idea: Plato considers a 'container' model for wholes (which are disjoint from their parts) [Parm 144e3-], and a 'nihilist' model, in which only wholes are mereological atoms, and a 'bare pluralities' view, in which wholes are not really one at all.
     From: report of Plato (works [c.375 BCE]) by Kathrin Koslicki - The Structure of Objects 5.2
     A reaction: [She cites Verity Harte for this analysis of Plato] The fourth, and best, seems to be that wholes are parts which fall under some unifying force or structure or principle.
9. Objects / D. Essence of Objects / 2. Types of Essence
Only universals have essence [Plato, by Politis]
     Full Idea: Plato argues that only universals have essence.
     From: report of Plato (works [c.375 BCE]) by Vassilis Politis - Aristotle and the Metaphysics 1.4
9. Objects / D. Essence of Objects / 6. Essence as Unifier
Plato and Aristotle take essence to make a thing what it is [Plato, by Politis]
     Full Idea: Plato and Aristotle have a shared general conception of essence: the essence of a thing is what that thing is simply in virtue of itself and in virtue of being the very thing it is. It answers the question 'What is this very thing?'
     From: report of Plato (works [c.375 BCE]) by Vassilis Politis - Aristotle and the Metaphysics 1.4
9. Objects / D. Essence of Objects / 7. Essence and Necessity / b. Essence not necessities
The complete concept of an individual includes contingent properties, as well as necessary ones [Leibniz]
     Full Idea: In this complete concept of possible Peter are contained not only essential or necessary things, ..but also existential things, or contingent items included there, because the nature of an individual substance is to have a perfect or complete concept.
     From: Gottfried Leibniz (Of liberty, Fate and God's grace [1690], Grua 311), quoted by Cover,J/O'Leary-Hawthorne,J - Substance and Individuation in Leibniz 3.3.1
     A reaction: Compare Idea 13077, where he seems to say that the complete concept is only necessarily linked to properties which will predict future events - though I suppose that would have to include all of the contingent properties mentioned here.
14. Science / D. Explanation / 1. Explanation / b. Aims of explanation
A good explanation totally rules out the opposite explanation (so Forms are required) [Plato, by Ruben]
     Full Idea: For Plato, an acceptable explanation is one such that there is no possibility of there being the opposite explanation at all, and he thought that only explanations in terms of the Forms, but never physical explanations, could meet this requirement.
     From: report of Plato (works [c.375 BCE]) by David-Hillel Ruben - Explaining Explanation Ch 2
     A reaction: [Republic 436c is cited]
17. Mind and Body / C. Functionalism / 2. Machine Functionalism
Basic logic can be done by syntax, with no semantics [Gödel, by Rey]
     Full Idea: Gödel in his completeness theorem for first-order logic showed that a certain set of syntactically specifiable rules was adequate to capture all first-order valid arguments. No semantics (e.g. reference, truth, validity) was necessary.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Georges Rey - Contemporary Philosophy of Mind 8.2
     A reaction: This implies that a logic machine is possible, but we shouldn't raise our hopes for proper rationality. Validity can be shown for purely algebraic arguments, but rationality requires truth as well as validity, and that needs propositions and semantics.
18. Thought / A. Modes of Thought / 3. Emotions / g. Controlling emotions
Plato wanted to somehow control and purify the passions [Vlastos on Plato]
     Full Idea: Plato put high on his agenda a project which did not figure in Socrates' programme at all: the hygienic conditioning of the passions. This cannot be an intellectual process, as argument cannot touch them.
     From: comment on Plato (works [c.375 BCE]) by Gregory Vlastos - Socrates: Ironist and Moral Philosopher p.88
     A reaction: This is the standard traditional view of any thinker who exaggerates the importance and potential of reason in our lives.
19. Language / F. Communication / 1. Rhetoric
Plato's whole philosophy may be based on being duped by reification - a figure of speech [Benardete,JA on Plato]
     Full Idea: Plato is liable to the charge of having been duped by a figure of speech, albeit the most profound of all, the trope of reification.
     From: comment on Plato (works [c.375 BCE]) by José A. Benardete - Metaphysics: the logical approach Ch.12
     A reaction: That might be a plausible account if his view was ridiculous, but given how many powerful friends Plato has, especially in the philosophy of mathematics, we should assume he was cleverer than that.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / c. Ethical intuitionism
Plato never refers to examining the conscience [Plato, by Foucault]
     Full Idea: Plato never speaks of the examination of conscience - never!
     From: report of Plato (works [c.375 BCE]) by Michel Foucault - On the Genealogy of Ethics p.276
     A reaction: Plato does imply some sort of self-evident direct knowledge about that nature of a healthy soul. Presumably the full-blown concept of conscience is something given from outside, from God. In 'Euthyphro', Plato asserts the primacy of morality (Idea 337).
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / j. Ethics by convention
As religion and convention collapsed, Plato sought morals not just in knowledge, but in the soul [Williams,B on Plato]
     Full Idea: Once gods and fate and social expectation were no longer there, Plato felt it necessary to discover ethics inside human nature, not just as ethical knowledge (Socrates' view), but in the structure of the soul.
     From: comment on Plato (works [c.375 BCE]) by Bernard Williams - Shame and Necessity II - p.43
     A reaction: anti Charles Taylor
22. Metaethics / C. The Good / 1. Goodness / b. Types of good
Plato's legacy to European thought was the Good, the Beautiful and the True [Plato, by Gray]
     Full Idea: Plato's legacy to European thought was a trio of capital letters - the Good, the Beautiful and the True.
     From: report of Plato (works [c.375 BCE]) by John Gray - Straw Dogs 2.8
     A reaction: It seems to have been Baumgarten who turned this into a slogan (Idea 8117). Gray says these ideals are lethal, but I identify with them very strongly, and am quite happy to see the good life as an attempt to find the right balance between them.
22. Metaethics / C. The Good / 1. Goodness / f. Good as pleasure
Pleasure is better with the addition of intelligence, so pleasure is not the good [Plato, by Aristotle]
     Full Idea: Plato says the life of pleasure is more desirable with the addition of intelligence, and if the combination is better, pleasure is not the good.
     From: report of Plato (works [c.375 BCE]) by Aristotle - Nicomachean Ethics 1172b27
     A reaction: It is obvious why we like pleasure, but not why intelligence makes it 'better'. Maybe it is just because we enjoy intelligence?
22. Metaethics / C. The Good / 2. Happiness / d. Routes to happiness
Plato decided that the virtuous and happy life was the philosophical life [Plato, by Nehamas]
     Full Idea: Plato came to the conclusion that virtue and happiness consist in the life of philosophy itself.
     From: report of Plato (works [c.375 BCE]) by Alexander Nehamas - Eristic,Antilogic,Sophistic,Dialectic p.117
     A reaction: This view is obviously ridiculous, because it largely excludes almost the entire human race, which sees philosophy as a cul-de-sac, even if it is good. But virtue and happiness need some serious thought.
23. Ethics / C. Virtue Theory / 1. Virtue Theory / a. Nature of virtue
Plato, unusually, said that theoretical and practical wisdom are inseparable [Plato, by Kraut]
     Full Idea: Two virtues that are ordinarily kept distinct - theoretical and practical wisdom - are joined by Plato; he thinks that neither one can be fully possessed unless it is combined with the other.
     From: report of Plato (works [c.375 BCE]) by Richard Kraut - Plato
     A reaction: I get the impression that this doctrine comes from Socrates, whose position is widely reported as 'intellectualist'. Aristotle certainly held the opposite view.
23. Ethics / F. Existentialism / 4. Boredom
Plato is boring [Nietzsche on Plato]
     Full Idea: Plato is boring.
     From: comment on Plato (works [c.375 BCE]) by Friedrich Nietzsche - Twilight of the Idols 9.2
27. Natural Reality / D. Time / 3. Parts of Time / a. Beginning of time
Almost everyone except Plato thinks that time could not have been generated [Plato, by Aristotle]
     Full Idea: With a single exception (Plato) everyone agrees about time - that it is not generated. Democritus says time is an obvious example of something not generated.
     From: report of Plato (works [c.375 BCE]) by Aristotle - Physics 251b14