Combining Texts

All the ideas for 'Theaetetus', 'Epistemology Naturalized' and 'What Required for Foundation for Maths?'

unexpand these ideas     |    start again     |     specify just one area for these texts


72 ideas

1. Philosophy / D. Nature of Philosophy / 7. Despair over Philosophy
Philosophers are always switching direction to something more interesting [Plato]
     Full Idea: Philosophers are always ready to change direction, if a topic crops up which is more attractive than the one to hand.
     From: Plato (Theaetetus [c.364 BCE], 172d)
     A reaction: Which sounds trivial, but it may be what God does.
1. Philosophy / F. Analytic Philosophy / 2. Analysis by Division
Either a syllable is its letters (making parts as knowable as whole) or it isn't (meaning it has no parts) [Plato]
     Full Idea: Either a syllable is not the same as its letters, in which case it cannot have the letters as parts of itself, or it is the same as its letters, in which case these basic elements are just as knowable as it is.
     From: Plato (Theaetetus [c.364 BCE], 205b)
Understanding mainly involves knowing the elements, not their combinations [Plato]
     Full Idea: A perfect grasp of any subject depends far more on knowing elements than on knowing complexes.
     From: Plato (Theaetetus [c.364 BCE], 206b)
2. Reason / A. Nature of Reason / 6. Coherence
A rational account is essentially a weaving together of things with names [Plato]
     Full Idea: Just as primary elements are woven together, so their names may be woven together to produce a spoken account, because an account is essentially a weaving together of names.
     From: Plato (Theaetetus [c.364 BCE], 202b)
     A reaction: If justification requires 'logos', and logos is a 'weaving together of names', then Plato might be taken as endorsing the coherence account of justification. Or do the two 'weavings' correspond?
2. Reason / C. Styles of Reason / 3. Eristic
Eristic discussion is aggressive, but dialectic aims to help one's companions in discussion [Plato]
     Full Idea: Eristic discussions involve as many tricks and traps as possible, but dialectical discussions involve being serious and correcting the interlocutor's mistakes only when they are his own fault or the result of past conditioning.
     From: Plato (Theaetetus [c.364 BCE], 167e)
2. Reason / D. Definition / 2. Aims of Definition
Definitions make our intuitions mathematically useful [Mayberry]
     Full Idea: Definition provides us with the means for converting our intuitions into mathematically usable concepts.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
2. Reason / D. Definition / 4. Real Definition
A primary element has only a name, and no logos, but complexes have an account, by weaving the names [Plato]
     Full Idea: A primary element cannot be expressed in an account; it can only be named, for a name is all that it has. But with the things composed of these ...just as the elements are woven together, so the names can woven to become an account.
     From: Plato (Theaetetus [c.364 BCE], 202b01-3)
     A reaction: This is the beginning of what I see as Aristotle's metaphysics, as derived from his epistemology, that is, ontology is what explains, and what we can give an account [logos] of. Aristotle treats this under 'definitions'.
2. Reason / E. Argument / 6. Conclusive Proof
Proof shows that it is true, but also why it must be true [Mayberry]
     Full Idea: When you have proved something you know not only that it is true, but why it must be true.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
     A reaction: Note the word 'must'. Presumably both the grounding and the necessitation of the truth are revealed.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
There is a semi-categorical axiomatisation of set-theory [Mayberry]
     Full Idea: We can give a semi-categorical axiomatisation of set-theory (all that remains undetermined is the size of the set of urelements and the length of the sequence of ordinals). The system is second-order in formalisation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: I gather this means the models may not be isomorphic to one another (because they differ in size), but can be shown to isomorphic to some third ingredient. I think. Mayberry says this shows there is no such thing as non-Cantorian set theory.
Set theory can't be axiomatic, because it is needed to express the very notion of axiomatisation [Mayberry]
     Full Idea: Set theory cannot be an axiomatic theory, because the very notion of an axiomatic theory makes no sense without it.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: This will come as a surprise to Penelope Maddy, who battles with ways to accept the set theory axioms as the foundation of mathematics. Mayberry says that the basic set theory required is much more simple and intuitive.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The misnamed Axiom of Infinity says the natural numbers are finite in size [Mayberry]
     Full Idea: The (misnamed!) Axiom of Infinity expresses Cantor's fundamental assumption that the species of natural numbers is finite in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The set hierarchy doesn't rely on the dubious notion of 'generating' them [Mayberry]
     Full Idea: The idea of 'generating' sets is only a metaphor - the existence of the hierarchy is established without appealing to such dubious notions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
     A reaction: Presumably there can be a 'dependence' or 'determination' relation which does not involve actual generation.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of size is part of the very conception of a set [Mayberry]
     Full Idea: Our very notion of a set is that of an extensional plurality limited in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
The mainstream of modern logic sees it as a branch of mathematics [Mayberry]
     Full Idea: In the mainstream tradition of modern logic, beginning with Boole, Peirce and Schröder, descending through Löwenheim and Skolem to reach maturity with Tarski and his school ...saw logic as a branch of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-1)
     A reaction: [The lesser tradition, of Frege and Russell, says mathematics is a branch of logic]. Mayberry says the Fregean tradition 'has almost died out'.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic only has its main theorems because it is so weak [Mayberry]
     Full Idea: First-order logic is very weak, but therein lies its strength. Its principle tools (Compactness, Completeness, Löwenheim-Skolem Theorems) can be established only because it is too weak to axiomatize either arithmetic or analysis.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.411-2)
     A reaction: He adds the proviso that this is 'unless we are dealing with structures on whose size we have placed an explicit, finite bound' (p.412-1).
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Only second-order logic can capture mathematical structure up to isomorphism [Mayberry]
     Full Idea: Second-order logic is a powerful tool of definition: by means of it alone we can capture mathematical structure up to isomorphism using simple axiom systems.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Big logic has one fixed domain, but standard logic has a domain for each interpretation [Mayberry]
     Full Idea: The 'logica magna' [of the Fregean tradition] has quantifiers ranging over a fixed domain, namely everything there is. In the Boolean tradition the domains differ from interpretation to interpretation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-2)
     A reaction: Modal logic displays both approaches, with different systems for global and local domains.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
No Löwenheim-Skolem logic can axiomatise real analysis [Mayberry]
     Full Idea: No logic which can axiomatize real analysis can have the Löwenheim-Skolem property.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
'Classificatory' axioms aim at revealing similarity in morphology of structures [Mayberry]
     Full Idea: The purpose of a 'classificatory' axiomatic theory is to single out an otherwise disparate species of structures by fixing certain features of morphology. ...The aim is to single out common features.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
Axiomatiation relies on isomorphic structures being essentially the same [Mayberry]
     Full Idea: The central dogma of the axiomatic method is this: isomorphic structures are mathematically indistinguishable in their essential properties.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
     A reaction: Hence it is not that we have to settle for the success of a system 'up to isomorphism', since that was the original aim. The structures must differ in their non-essential properties, or they would be the same system.
'Eliminatory' axioms get rid of traditional ideal and abstract objects [Mayberry]
     Full Idea: The purpose of what I am calling 'eliminatory' axiomatic theories is precisely to eliminate from mathematics those peculiar ideal and abstract objects that, on the traditional view, constitute its subject matter.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-1)
     A reaction: A very interesting idea. I have a natural antipathy to 'abstract objects', because they really mess up what could otherwise be a very tidy ontology. What he describes might be better called 'ignoring' axioms. The objects may 'exist', but who cares?
5. Theory of Logic / K. Features of Logics / 6. Compactness
No logic which can axiomatise arithmetic can be compact or complete [Mayberry]
     Full Idea: No logic which can axiomatise arithmetic can be compact or complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
     A reaction: I take this to be because there are new truths in the transfinite level (as well as the problem of incompleteness).
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers can be eliminated, by axiom systems for complete ordered fields [Mayberry]
     Full Idea: We eliminate the real numbers by giving an axiomatic definition of the species of complete ordered fields. These axioms are categorical (mutually isomorphic), and thus are mathematically indistinguishable.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: Hence my clever mathematical friend says that it is a terrible misunderstanding to think that mathematics is about numbers. Mayberry says the reals are one ordered field, but mathematics now studies all ordered fields together.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / b. Quantity
Real numbers were invented, as objects, to simplify and generalise 'quantity' [Mayberry]
     Full Idea: The abstract objects of modern mathematics, the real numbers, were invented by the mathematicians of the seventeenth century in order to simplify and to generalize the Greek science of quantity.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
Greek quantities were concrete, and ratio and proportion were their science [Mayberry]
     Full Idea: Quantities for Greeks were concrete things - lines, surfaces, solids, times, weights. At the centre of their science of quantity was the beautiful theory of ratio and proportion (...in which the notion of number does not appear!).
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
     A reaction: [He credits Eudoxus, and cites Book V of Euclid]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor extended the finite (rather than 'taming the infinite') [Mayberry]
     Full Idea: We may describe Cantor's achievement by saying, not that he tamed the infinite, but that he extended the finite.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
Cantor's infinite is an absolute, of all the sets or all the ordinal numbers [Mayberry]
     Full Idea: In Cantor's new vision, the infinite, the genuine infinite, does not disappear, but presents itself in the guise of the absolute, as manifested in the species of all sets or the species of all ordinal numbers.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
If proof and definition are central, then mathematics needs and possesses foundations [Mayberry]
     Full Idea: If we grant, as surely we must, the central importance of proof and definition, then we must also grant that mathematics not only needs, but in fact has, foundations.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
The ultimate principles and concepts of mathematics are presumed, or grasped directly [Mayberry]
     Full Idea: The ultimate principles upon which mathematics rests are those to which mathematicians appeal without proof; and the primitive concepts of mathematics ...themselves are grasped directly, if grasped at all, without the mediation of definition.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
     A reaction: This begs the question of whether the 'grasping' is purely a priori, or whether it derives from experience. I defend the latter, and Jenkins puts the case well.
Foundations need concepts, definition rules, premises, and proof rules [Mayberry]
     Full Idea: An account of the foundations of mathematics must specify four things: the primitive concepts for use in definitions, the rules governing definitions, the ultimate premises of proofs, and rules allowing advance from premises to conclusions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
Axiom theories can't give foundations for mathematics - that's using axioms to explain axioms [Mayberry]
     Full Idea: No axiomatic theory, formal or informal, of first or of higher order can logically play a foundational role in mathematics. ...It is obvious that you cannot use the axiomatic method to explain what the axiomatic method is.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
1st-order PA is only interesting because of results which use 2nd-order PA [Mayberry]
     Full Idea: The sole theoretical interest of first-order Peano arithmetic derives from the fact that it is a first-order reduct of a categorical second-order theory. Its axioms can be proved incomplete only because the second-order theory is categorical.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
It is only 2nd-order isomorphism which suggested first-order PA completeness [Mayberry]
     Full Idea: If we did not know that the second-order axioms characterise the natural numbers up to isomorphism, we should have no reason to suppose, a priori, that first-order Peano Arithmetic should be complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is not just first-order ZF, because that is inadequate for mathematics [Mayberry]
     Full Idea: The idea that set theory must simply be identified with first-order Zermelo-Fraenkel is surprisingly widespread. ...The first-order axiomatic theory of sets is clearly inadequate as a foundation of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-2)
     A reaction: [He is agreeing with a quotation from Skolem].
We don't translate mathematics into set theory, because it comes embodied in that way [Mayberry]
     Full Idea: One does not have to translate 'ordinary' mathematics into the Zermelo-Fraenkel system: ordinary mathematics comes embodied in that system.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-1)
     A reaction: Mayberry seems to be a particular fan of set theory as spelling out the underlying facts of mathematics, though it has to be second-order.
Set theory is not just another axiomatised part of mathematics [Mayberry]
     Full Idea: The fons et origo of all confusion is the view that set theory is just another axiomatic theory and the universe of sets just another mathematical structure. ...The universe of sets ...is the world that all mathematical structures inhabit.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.416-1)
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
We master arithmetic by knowing all the numbers in our soul [Plato]
     Full Idea: It must surely be true that a man who has completely mastered arithmetic knows all numbers? Because there are pieces of knowledge covering all numbers in his soul.
     From: Plato (Theaetetus [c.364 BCE], 198b)
     A reaction: This clearly views numbers as objects. Expectation of knowing them all is a bit startling! They also appear to be innate in us, and hence they appear to be Forms. See Aristotle's comment in Idea 645.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Mathematics reduces to set theory (which is a bit vague and unobvious), but not to logic proper [Quine]
     Full Idea: Mathematics reduces only to set theory, and not to logic proper… but set theory cannot claim the same firmness and obviousness as logic.
     From: Willard Quine (Epistemology Naturalized [1968], p.69-70)
7. Existence / B. Change in Existence / 1. Nature of Change
There seem to be two sorts of change: alteration and motion [Plato]
     Full Idea: There are two kinds of change, I think: alteration and motion.
     From: Plato (Theaetetus [c.364 BCE], 181d)
     A reaction: Idea 1700 is better than this.
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Real numbers as abstracted objects are now treated as complete ordered fields [Mayberry]
     Full Idea: The abstractness of the old fashioned real numbers has been replaced by generality in the modern theory of complete ordered fields.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: In philosophy, I'm increasingly thinking that we should talk much more of 'generality', and a great deal less about 'universals'. (By which I don't mean that redness is just the set of red things).
9. Objects / C. Structure of Objects / 8. Parts of Objects / a. Parts of objects
If a word has no parts and has a single identity, it turns out to be the same kind of thing as a letter [Plato]
     Full Idea: If a complex or a syllable has no parts and is a single identity, hasn't it turned out to be the same kind of thing as an element or letter?
     From: Plato (Theaetetus [c.364 BCE], 205d)
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
The whole can't be the parts, because it would be all of the parts, which is the whole [Plato]
     Full Idea: The whole does not consist of parts; for it did, it would be all the parts and so would be the sum.
     From: Plato (Theaetetus [c.364 BCE], 204e)
     A reaction: That is, 'the whole is the sum of its parts' is a tautology! The claim that 'the whole is more than the sum of its parts' gets into similar trouble. See Verity Harte on this.
A sum is that from which nothing is lacking, which is a whole [Plato]
     Full Idea: But this sum now - isn't it just when there is nothing lacking that it is a sum? Yes, necessarily. And won't this very same thing - that from which nothing is lacking - be a whole?
     From: Plato (Theaetetus [c.364 BCE], 205a)
     A reaction: This seems to be right, be rather too vague and potentially circular to be of much use. What is the criterion for deciding that nothing is lacking?
11. Knowledge Aims / A. Knowledge / 1. Knowledge
Things are only knowable if a rational account (logos) is possible [Plato]
     Full Idea: Things which are susceptible to a rational account are knowable.
     From: Plato (Theaetetus [c.364 BCE], 201d)
11. Knowledge Aims / A. Knowledge / 2. Understanding
Expertise is knowledge of the whole by means of the parts [Plato]
     Full Idea: A man has passed from mere judgment to expert knowledge of the being of a wagon when he has done so in virtue of having gone over the whole by means of the elements.
     From: Plato (Theaetetus [c.364 BCE], 207c)
     A reaction: Plato is emphasising that the expert must know the hundred parts of a wagon, and not just the half dozen main components, but here the point is to go over the whole via the parts, and not just list the parts.
11. Knowledge Aims / A. Knowledge / 4. Belief / c. Aim of beliefs
It is impossible to believe something which is held to be false [Plato]
     Full Idea: It is impossible to believe something which is not the case.
     From: Plato (Theaetetus [c.364 BCE], 167a)
11. Knowledge Aims / A. Knowledge / 4. Belief / d. Cause of beliefs
How can a belief exist if its object doesn't exist? [Plato]
     Full Idea: If the object of a belief is what is not, the object of this belief is nothing; but if there is no object to a belief, then that is not belief at all.
     From: Plato (Theaetetus [c.364 BCE], 189a)
12. Knowledge Sources / B. Perception / 1. Perception
Perception is infallible, suggesting that it is knowledge [Plato]
     Full Idea: Perception is always of something that is, and it is infallible, which suggests that it is knowledge.
     From: Plato (Theaetetus [c.364 BCE], 152c)
Our senses could have been separate, but they converge on one mind [Plato]
     Full Idea: It would be peculiar if each of us were like a Trojan horse, with a whole bunch of senses sitting inside us, rather than that all these perceptions converge onto a single identity (mind, or whatever one ought to call it).
     From: Plato (Theaetetus [c.364 BCE], 184d)
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Thought must grasp being itself before truth becomes possible [Plato]
     Full Idea: If you can't apprehend being you can't apprehend truth, and so a thing could not be known. Therefore knowledge is not located in immediate experience but in thinking about it, since the latter makes it possible to grasp being and truth.
     From: Plato (Theaetetus [c.364 BCE], 186c)
With what physical faculty do we perceive pairs of opposed abstract qualities? [Plato]
     Full Idea: With what physical faculty do we perceive being and not-being, similarity and dissimilarity, identity and difference, oneness and many, odd and even and other maths, ….fineness and goodness?
     From: Plato (Theaetetus [c.364 BCE], 185d)
You might mistake eleven for twelve in your senses, but not in your mind [Plato]
     Full Idea: Sight or touch might make someone take eleven for twelve, but he could never form this mistaken belief about the contents of his mind.
     From: Plato (Theaetetus [c.364 BCE], 195e)
13. Knowledge Criteria / A. Justification Problems / 1. Justification / b. Need for justification
An inadequate rational account would still not justify knowledge [Plato]
     Full Idea: If you don't know which letters belong together in the right syllables…it is possible for true belief to be accompanied by a rational account and still not be entitled to the name of knowledge.
     From: Plato (Theaetetus [c.364 BCE], 208b)
     A reaction: In each case of justification there is a 'clinching' stage, for which there is never going to be a strict rule. It might be foundational, but equally it might be massive coherence, or no alternative.
13. Knowledge Criteria / A. Justification Problems / 2. Justification Challenges / a. Agrippa's trilemma
Parts and wholes are either equally knowable or equally unknowable [Plato]
     Full Idea: Either a syllable and its letters are equally knowable and expressible in a rational account, or they are both equally unknowable and inexpressible.
     From: Plato (Theaetetus [c.364 BCE], 205e)
     A reaction: Presumably you could explain the syllable by the letters, but not vice versa, but he must mean that the explanation is worthless without the letters being explained too. So all explanation is worthless?
Without distinguishing marks, how do I know what my beliefs are about? [Plato]
     Full Idea: If I only have beliefs about Theaetetus when I don't know his distinguishing mark, how on earth were my beliefs about you rather than anyone else?
     From: Plato (Theaetetus [c.364 BCE], 209b)
     A reaction: This is a rather intellectualist approach to mental activity. Presumably Theaetetus has lots of distinguishing marks, but they are not conscious. Must Socrates know everything?
13. Knowledge Criteria / A. Justification Problems / 3. Internal or External / a. Pro-internalism
A rational account might be seeing an image of one's belief, like a reflection in a mirror [Plato]
     Full Idea: A rational account might be forming an image of one's belief, as in a mirror or a pond.
     From: Plato (Theaetetus [c.364 BCE], 206d)
     A reaction: Not promising, since the image is not going to be clearer than the original, or contain any new information. Maybe it would be clarified by being 'framed', instead of drifting in muddle.
A rational account involves giving an image, or analysis, or giving a differentiating mark [Plato]
     Full Idea: A third sort of rational account (after giving an image, or analysing elements) is being able to mention some mark which differentiates the object in question ('the sun is the brightest heavenly body').
     From: Plato (Theaetetus [c.364 BCE], 208c)
     A reaction: This is Plato's clearest statement of what would be involved in adding the necessary logos to your true belief. An image of it, or an analysis, or an individuation. How about a cause?
13. Knowledge Criteria / B. Internal Justification / 4. Foundationalism / a. Foundationalism
Maybe primary elements can be named, but not receive a rational account [Plato]
     Full Idea: Maybe the primary elements of which things are composed are not susceptible to rational accounts. Each of them taken by itself can only be named, but nothing further can be said about it.
     From: Plato (Theaetetus [c.364 BCE], 201e)
     A reaction: This still seems to be more or less the central issue in philosophy - which things should be treated as 'primitive', and which other things are analysed and explained using the primitive tools?
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / b. Pro-coherentism
A rational account of a wagon would mean knowledge of its hundred parts [Plato]
     Full Idea: In the case of a wagon, we may only have correct belief, but someone who is able to explain what it is by going through its hundred parts has got hold of a rational account.
     From: Plato (Theaetetus [c.364 BCE], 207b)
     A reaction: A wonderful example. In science, you know smoking correlates with cancer, but you only know it when you know the mechanism, the causal structure. This may be a general truth.
13. Knowledge Criteria / C. External Justification / 9. Naturalised Epistemology
You can't reduce epistemology to psychology, because that presupposes epistemology [Maund on Quine]
     Full Idea: There is something seriously misguided about Quine's project of reducing epistemology to psychology, since psychology, like any of the natural sciences, presupposes an epistemology.
     From: comment on Willard Quine (Epistemology Naturalized [1968]) by Barry Maund - Perception Ch.1
     A reaction: I wonder if epistemology presupposes psychology? Belief, for example, is a category of folk psychology, which could be challenged. There is a quiet battle going on between philosophy and science.
We should abandon a search for justification or foundations, and focus on how knowledge is acquired [Quine, by Davidson]
     Full Idea: Quine is suggesting that philosophy should abandon the attempt to provide a foundation for knowledge, or otherwise justify it, and should instead give an account of how knowledge is acquired.
     From: report of Willard Quine (Epistemology Naturalized [1968]) by Donald Davidson - Epistemology Externalized p.193
     A reaction: If you are going to explain how 'knowledge' is acquired, you'd better know what knowledge is. My suspicion is that Quine would be quite happy (in the pragmatist tradition) to just focus on belief, and forget about knowledge entirely.
If we abandon justification and normativity in epistemology, we must also abandon knowledge [Kim on Quine]
     Full Idea: Quine asks us to set aside the entire framework of justification-centered epistemology, ..and repudiate normativity. ..But then knowledge itself drops out of epistemology, for our concept of knowledge is inseparably tied to that of justification.
     From: comment on Willard Quine (Epistemology Naturalized [1968]) by Jaegwon Kim - What is 'naturalized epistemology'? p.305
     A reaction: Presumably this would not bother Quine, who wants to hand so-called 'epistemology' over to the psychologists. A psychological account of belief seems plausible. Presumably false beliefs could only be pragmatically characterised.
Without normativity, naturalized epistemology isn't even about beliefs [Kim on Quine]
     Full Idea: If normativity is wholly excluded from naturalized epistemology it cannot even be thought of as being about beliefs.
     From: comment on Willard Quine (Epistemology Naturalized [1968]) by Jaegwon Kim - What is 'naturalized epistemology'? p.306
     A reaction: And if it doesn't refer to beliefs, it certainly doesn't refer to knowledge. One might try to subsume normativity under evolutionary pragmatic 'drives', or something. Quine's project would then become wildly speculative, and hence boring.
Epistemology is a part of psychology, studying how our theories relate to our evidence [Quine]
     Full Idea: Epistemology falls into place as a chapter of psychology, and hence of natural science. ..We study meagre input and torrential output, to see how evidence relates to theory, and in what ways one's theory of nature transcends any available evidence.
     From: Willard Quine (Epistemology Naturalized [1968], p.83)
     A reaction: It depends what you are interested in. If you just want to know what makes humans tick, then Quine is your man, but if you want to know things in general, and want to know how to get it right, then the normative side of epistemology is unavoidable.
13. Knowledge Criteria / D. Scepticism / 5. Dream Scepticism
What evidence can be brought to show whether we are dreaming or not? [Plato]
     Full Idea: What evidence could be brought if we were asked at this very moment whether we are asleep and are dreaming all our thoughts?
     From: Plato (Theaetetus [c.364 BCE], 158b)
13. Knowledge Criteria / E. Relativism / 6. Relativism Critique
If you claim that all beliefs are true, that includes beliefs opposed to your own [Plato]
     Full Idea: To say that everyone believes what is the case, is to concede the truth of the oppositions' beliefs; in other words, the person has to concede that he himself is wrong.
     From: Plato (Theaetetus [c.364 BCE], 171a)
How can a relativist form opinions about what will happen in the future? [Plato]
     Full Idea: Does a relativist have any authority to decide about things which will happen in the future?
     From: Plato (Theaetetus [c.364 BCE], 178c)
     A reaction: Nice question! It seems commonsense that such speculations are possible, but without a concept of truth they are ridiculous.
Clearly some people are superior to others when it comes to medicine [Plato]
     Full Idea: In medicine, at least, most people are not self-sufficient at prescribing and effecting cures for themselves, and here some people are superior to others.
     From: Plato (Theaetetus [c.364 BCE], 171e)
19. Language / A. Nature of Meaning / 1. Meaning
Inculcations of meanings of words rests ultimately on sensory evidence [Quine]
     Full Idea: All inculcation of meanings of words must rest ultimately on sensory evidence.
     From: Willard Quine (Epistemology Naturalized [1968], p.75)
     A reaction: This betrays Quine's behaviourist tendencies, and rules out introspection, definitions and inferences. Quine's conclusion is fairly total scepticism about meaning, but that is not surprising, given his external and meaningless starting point.
19. Language / E. Analyticity / 4. Analytic/Synthetic Critique
In observation sentences, we could substitute community acceptance for analyticity [Quine]
     Full Idea: Perhaps the controversial notion of analyticity can be dispensed with, in our definition of observation sentences, in favour of the straightforward attitude of community-wide acceptance.
     From: Willard Quine (Epistemology Naturalized [1968], p.86)
     A reaction: That might be a reasonable account of 'bachelors'. If the whole community accepts 'God exists', does that make it analytic? If a whole (small!) community claims to actually observe a ghost or a flying saucer, is that then analytic?
28. God / A. Divine Nature / 6. Divine Morality / c. God is the good
God must be the epitome of goodness, and we can only approach a divine state by being as good as possible [Plato]
     Full Idea: It is impossible for God to be immoral and not to be the acme of morality; and the only way any of us can approximate to God is to become as moral as possible.
     From: Plato (Theaetetus [c.364 BCE], 176c)
29. Religion / D. Religious Issues / 3. Problem of Evil / a. Problem of Evil
There must always be some force of evil ranged against good [Plato]
     Full Idea: The elimination of evil is impossible, Theodorus; there must always be some force ranged against good.
     From: Plato (Theaetetus [c.364 BCE], 176a)