Combining Texts

All the ideas for '67: Platonic Questions', 'On Platonism in Mathematics' and 'Elements of Set Theory'

unexpand these ideas     |    start again     |     specify just one area for these texts


12 ideas

4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
∈ says the whole set is in the other; ⊆ says the members of the subset are in the other [Enderton]
     Full Idea: To know if A ∈ B, we look at the set A as a single object, and check if it is among B's members. But if we want to know whether A ⊆ B then we must open up set A and check whether its various members are among the members of B.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 1:04)
     A reaction: This idea is one of the key ideas to grasp if you are going to get the hang of set theory. John ∈ USA ∈ UN, but John is not a member of the UN, because he isn't a country. See Idea 12337 for a special case.
The 'ordered pair' <x,y> is defined to be {{x}, {x,y}} [Enderton]
     Full Idea: The 'ordered pair' <x,y> is defined to be {{x}, {x,y}}; hence it can be proved that <u,v> = <x,y> iff u = x and v = y (given by Kuratowski in 1921). ...The definition is somewhat arbitrary, and others could be used.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 3:36)
     A reaction: This looks to me like one of those regular cases where the formal definitions capture all the logical behaviour of the concept that are required for inference, while failing to fully capture the concept for ordinary conversation.
A 'linear or total ordering' must be transitive and satisfy trichotomy [Enderton]
     Full Idea: A 'linear ordering' (or 'total ordering') on A is a binary relation R meeting two conditions: R is transitive (of xRy and yRz, the xRz), and R satisfies trichotomy (either xRy or x=y or yRx).
     From: Herbert B. Enderton (Elements of Set Theory [1977], 3:62)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Note that {Φ} =/= Φ, because Φ ∈ {Φ} but Φ ∉ Φ [Enderton]
     Full Idea: Note that {Φ} =/= Φ, because Φ ∈ {Φ} but Φ ∉ Φ. A man with an empty container is better off than a man with nothing.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 1.03)
The empty set may look pointless, but many sets can be constructed from it [Enderton]
     Full Idea: It might be thought at first that the empty set would be a rather useless or even frivolous set to mention, but from the empty set by various set-theoretic operations a surprising array of sets will be constructed.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 1:02)
     A reaction: This nicely sums up the ontological commitments of mathematics - that we will accept absolutely anything, as long as we can have some fun with it. Sets are an abstraction from reality, and the empty set is the very idea of that abstraction.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
The singleton is defined using the pairing axiom (as {x,x}) [Enderton]
     Full Idea: Given any x we have the singleton {x}, which is defined by the pairing axiom to be {x,x}.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 2:19)
     A reaction: An interesting contrivance which is obviously aimed at keeping the axioms to a minimum. If you can do it intuitively with a new axiom, or unintuitively with an existing axiom - prefer the latter!
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Fraenkel added Replacement, to give a theory of ordinal numbers [Enderton]
     Full Idea: It was observed by several people that for a satisfactory theory of ordinal numbers, Zermelo's axioms required strengthening. The Axiom of Replacement was proposed by Fraenkel and others, giving rise to the Zermelo-Fraenkel (ZF) axioms.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 1:15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
We can only define functions if Choice tells us which items are involved [Enderton]
     Full Idea: For functions, we know that for any y there exists an appropriate x, but we can't yet form a function H, as we have no way of defining one particular choice of x. Hence we need the axiom of choice.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 3:48)
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Very few things in set theory remain valid in intuitionist mathematics [Bernays]
     Full Idea: Very few things in set theory remain valid in intuitionist mathematics.
     From: Paul Bernays (On Platonism in Mathematics [1934])
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Restricted Platonism is just an ideal projection of a domain of thought [Bernays]
     Full Idea: A restricted Platonism does not claim to be more than, so to speak, an ideal projection of a domain of thought.
     From: Paul Bernays (On Platonism in Mathematics [1934], p.261)
     A reaction: I have always found Platonism to be congenial when it talks of 'ideals', and ridiculous when it talks of a special form of 'existence'. Ideals only 'exist' because we idealise things. I may declare myself, after all, to be a Restricted Platonist.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Mathematical abstraction just goes in a different direction from logic [Bernays]
     Full Idea: Mathematical abstraction does not have a lesser degree than logical abstraction, but rather another direction.
     From: Paul Bernays (On Platonism in Mathematics [1934], p.268)
     A reaction: His point is that the logicists seem to think that if you increasingly abstract from mathematics, you end up with pure logic.
15. Nature of Minds / A. Nature of Mind / 2. Psuche
When the soul is intelligent and harmonious, it is part of god and derives from god [Plutarch]
     Full Idea: The soul, when it has partaken of intelligence and reason and concord, is not merely a work but also a part of god and has come to be not by his agency but both from him as source and out of his substance.
     From: Plutarch (67: Platonic Questions [c.85], II.1001)
     A reaction: A most intriguing shift of view from earlier concepts of the psuché. How did this come about? This man is a pagan. The history is in the evolution of Platonism. See 'The Middle Platonists' by John Dillon. Davidson is also very impressed by reason.