Combining Texts

All the ideas for 'fragments/reports', 'An Inquiry into Meaning and Truth' and 'Philosophical Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


45 ideas

3. Truth / A. Truth Problems / 7. Falsehood
Asserting not-p is saying p is false [Russell]
     Full Idea: When you do what a logician would call 'asserting not-p', you are saying 'p is false'.
     From: Bertrand Russell (An Inquiry into Meaning and Truth [1940], 5)
     A reaction: This is presumably classical logic. If we could label p as 'undetermined' (a third truth value), then 'not-p' might equally mean 'undetermined'.
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
There are four experiences that lead us to talk of 'some' things [Russell]
     Full Idea: Propositions about 'some' arise, in practice, in four ways: as generalisations of disjunctions; when an instance suggests compatibility of terms we thought incompatible; as steps to a generalisation; and in cases of imperfect memory.
     From: Bertrand Russell (An Inquiry into Meaning and Truth [1940], 5)
     A reaction: Modern logicians seem to have no interest in the question Russell is investigating here, but I love his attempt, however vague the result, to connect logic to real experience and thought.
4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
With four tense operators, all complex tenses reduce to fourteen basic cases [Burgess]
     Full Idea: Fand P as 'will' and 'was', G as 'always going to be', H as 'always has been', all tenses reduce to 14 cases: the past series, each implying the next, FH,H,PH,HP,P,GP, and the future series PG,G,FG,GF,F,HF, plus GH=HG implying all, FP=PF which all imply.
     From: John P. Burgess (Philosophical Logic [2009], 2.8)
     A reaction: I have tried to translate the fourteen into English, but am not quite confident enough to publish them here. I leave it as an exercise for the reader.
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The temporal Barcan formulas fix what exists, which seems absurd [Burgess]
     Full Idea: In temporal logic, if the converse Barcan formula holds then nothing goes out of existence, and the direct Barcan formula holds if nothing ever comes into existence. These results highlight the intuitive absurdity of the Barcan formulas.
     From: John P. Burgess (Philosophical Logic [2009], 2.9)
     A reaction: This is my reaction to the modal cases as well - the absurdity of thinking that no actually nonexistent thing might possibly have existed, or that the actual existents might not have existed. Williamson seems to be the biggest friend of the formulas.
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Is classical logic a part of intuitionist logic, or vice versa? [Burgess]
     Full Idea: From one point of view intuitionistic logic is a part of classical logic, missing one axiom, from another classical logic is a part of intuitionistic logic, missing two connectives, intuitionistic v and →
     From: John P. Burgess (Philosophical Logic [2009], 6.4)
It is still unsettled whether standard intuitionist logic is complete [Burgess]
     Full Idea: The question of the completeness of the full intuitionistic logic for its intended interpretation is not yet fully resolved.
     From: John P. Burgess (Philosophical Logic [2009], 6.9)
4. Formal Logic / E. Nonclassical Logics / 5. Relevant Logic
Relevance logic's → is perhaps expressible by 'if A, then B, for that reason' [Burgess]
     Full Idea: The relevantist logician's → is perhaps expressible by 'if A, then B, for that reason'.
     From: John P. Burgess (Philosophical Logic [2009], 5.8)
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
The physical world doesn't need logic, but the mental world does [Russell]
     Full Idea: The non-mental world can be completely described without the use of any logical word, …but when it comes to the mental world, there are facts which cannot be mentioned without the use of logical words.
     From: Bertrand Russell (An Inquiry into Meaning and Truth [1940], 5)
     A reaction: He adds that logical words are not needed for physics, but are needed for psychology. I love Russell's interest in the psychology of logic (in defiance of the anti-psychologism of Frege). See also the ideas of Robert Hanna.
Technical people see logic as any formal system that can be studied, not a study of argument validity [Burgess]
     Full Idea: Among the more technically oriented a 'logic' no longer means a theory about which forms of argument are valid, but rather means any formalism, regardless of its applications, that resembles original logic enough to be studied by similar methods.
     From: John P. Burgess (Philosophical Logic [2009], Pref)
     A reaction: There doesn't seem to be any great intellectual obligation to be 'technical'. As far as pure logic is concerned, I am very drawn to the computer approach, since I take that to be the original dream of Aristotle and Leibniz - impersonal precision.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Classical logic neglects the non-mathematical, such as temporality or modality [Burgess]
     Full Idea: There are topics of great philosophical interest that classical logic neglects because they are not important to mathematics. …These include distinctions of past, present and future, or of necessary, actual and possible.
     From: John P. Burgess (Philosophical Logic [2009], 1.1)
The Cut Rule expresses the classical idea that entailment is transitive [Burgess]
     Full Idea: The Cut rule (from A|-B and B|-C, infer A|-C) directly expresses the classical doctrine that entailment is transitive.
     From: John P. Burgess (Philosophical Logic [2009], 5.3)
Classical logic neglects counterfactuals, temporality and modality, because maths doesn't use them [Burgess]
     Full Idea: Classical logic neglects counterfactual conditionals for the same reason it neglects temporal and modal distinctions, namely, that they play no serious role in mathematics.
     From: John P. Burgess (Philosophical Logic [2009], 4.1)
     A reaction: Science obviously needs counterfactuals, and metaphysics needs modality. Maybe so-called 'classical' logic will be renamed 'basic mathematical logic'. Philosophy will become a lot clearer when that happens.
5. Theory of Logic / A. Overview of Logic / 9. Philosophical Logic
Philosophical logic is a branch of logic, and is now centred in computer science [Burgess]
     Full Idea: Philosophical logic is a branch of logic, a technical subject. …Its centre of gravity today lies in theoretical computer science.
     From: John P. Burgess (Philosophical Logic [2009], Pref)
     A reaction: He firmly distinguishes it from 'philosophy of logic', but doesn't spell it out. I take it that philosophical logic concerns metaprinciples which compare logical systems, and suggest new lines of research. Philosophy of logic seems more like metaphysics.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Questions wouldn't lead anywhere without the law of excluded middle [Russell]
     Full Idea: Without the law of excluded middle, we could not ask the questions that give rise to discoveries.
     From: Bertrand Russell (An Inquiry into Meaning and Truth [1940], c.p.88)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Formalising arguments favours lots of connectives; proving things favours having very few [Burgess]
     Full Idea: When formalising arguments it is convenient to have as many connectives as possible available.; but when proving results about formulas it is convenient to have as few as possible.
     From: John P. Burgess (Philosophical Logic [2009], 1.4)
     A reaction: Illuminating. The fact that you can whittle classical logic down to two (or even fewer!) connectives warms the heart of technicians, but makes connection to real life much more difficult. Hence a bunch of extras get added.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / e. or
A disjunction expresses indecision [Russell]
     Full Idea: A disjunction is the verbal expression of indecision, or, if a question, of the desire to reach a decision.
     From: Bertrand Russell (An Inquiry into Meaning and Truth [1940], 5)
     A reaction: Russell is fishing here for Grice's conversational implicature. If you want to assert a simple proposition, you don't introduce it into an irrelevant disjunction, because that would have a particular expressive purpose.
Disjunction may also arise in practice if there is imperfect memory. [Russell]
     Full Idea: Another situation in which a disjunction may arise is practice is imperfect memory. 'Either Brown or Jones told me that'.
     From: Bertrand Russell (An Inquiry into Meaning and Truth [1940], 5)
'Or' expresses hesitation, in a dog at a crossroads, or birds risking grabbing crumbs [Russell]
     Full Idea: Psychologically, 'or' corresponds to a state of hesitation. A dog waits at a fork in the road, to see which way you are going. For crumbs on a windowsill, birds behave in a manner we would express by 'shall I be brave, or go hungry?'.
     From: Bertrand Russell (An Inquiry into Meaning and Truth [1940], 5)
     A reaction: I love two facts here - first, that Russell wants to link the connective to the psychology of experience, and second, that a great logician wants to connect his logic to the minds of animals.
'Or' expresses a mental state, not something about the world [Russell]
     Full Idea: When we assert 'p or q' we are in a state which is derivative from two previous states, and we express this state, not something about the world.
     From: Bertrand Russell (An Inquiry into Meaning and Truth [1940], 5)
     A reaction: His example: at a junction this road or that road goes to Oxford, but the world only contains the roads, not some state of 'this or that road'. He doesn't deny that in one sense 'p or q' tells you something about the world.
Maybe the 'or' used to describe mental states is not the 'or' of logic [Russell]
     Full Idea: It might be contended that, in describing what happens when a man believes 'p or q', the 'or' that we must use is not the same as the 'or' of logic.
     From: Bertrand Russell (An Inquiry into Meaning and Truth [1940], 5)
     A reaction: This seems to be the general verdict on Russell's enquiries in this chapter, but I love any attempt, however lacking in rigour etc., to connect formal logic to how we think, and thence to the world.
Asserting a disjunction from one disjunct seems odd, but can be sensible, and needed in maths [Burgess]
     Full Idea: Gricean implicature theory might suggest that a disjunction is never assertable when a disjunct is (though actually the disjunction might be 'pertinent') - but the procedure is indispensable in mathematical practice.
     From: John P. Burgess (Philosophical Logic [2009], 5.2)
     A reaction: He gives an example of a proof in maths which needs it, and an unusual conversational occasion where it makes sense.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
All occurrences of variables in atomic formulas are free [Burgess]
     Full Idea: All occurrences of variables in atomic formulas are free.
     From: John P. Burgess (Philosophical Logic [2009], 1.7)
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
The denotation of a definite description is flexible, rather than rigid [Burgess]
     Full Idea: By contrast to rigidly designating proper names, …the denotation of definite descriptions is (in general) not rigid but flexible.
     From: John P. Burgess (Philosophical Logic [2009], 2.9)
     A reaction: This modern way of putting it greatly clarifies why Russell was interested in the type of reference involved in definite descriptions. Obviously some descriptions (such as 'the only person who could ever have…') might be rigid.
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
'Induction' and 'recursion' on complexity prove by connecting a formula to its atomic components [Burgess]
     Full Idea: There are atomic formulas, and formulas built from the connectives, and that is all. We show that all formulas have some property, first for the atomics, then the others. This proof is 'induction on complexity'; we also use 'recursion on complexity'.
     From: John P. Burgess (Philosophical Logic [2009], 1.4)
     A reaction: That is: 'induction on complexity' builds a proof from atomics, via connectives; 'recursion on complexity' breaks down to the atomics, also via the connectives. You prove something by showing it is rooted in simple truths.
5. Theory of Logic / H. Proof Systems / 6. Sequent Calculi
The sequent calculus makes it possible to have proof without transitivity of entailment [Burgess]
     Full Idea: It might be wondered how one could have any kind of proof procedure at all if transitivity of entailment is disallowed, but the sequent calculus can get around the difficulty.
     From: John P. Burgess (Philosophical Logic [2009], 5.3)
     A reaction: He gives examples where transitivity of entailment (so that you can build endless chains of deductions) might fail. This is the point of the 'cut free' version of sequent calculus, since the cut rule allows transitivity.
We can build one expanding sequence, instead of a chain of deductions [Burgess]
     Full Idea: Instead of demonstrations which are either axioms, or follow from axioms by rules, we can have one ever-growing sequence of formulas of the form 'Axioms |- ______', where the blank is filled by Axioms, then Lemmas, then Theorems, then Corollaries.
     From: John P. Burgess (Philosophical Logic [2009], 5.3)
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
'Tautologies' are valid formulas of classical sentential logic - or substitution instances in other logics [Burgess]
     Full Idea: The valid formulas of classical sentential logic are called 'tautologically valid', or simply 'tautologies'; with other logics 'tautologies' are formulas that are substitution instances of valid formulas of classical sentential logic.
     From: John P. Burgess (Philosophical Logic [2009], 1.5)
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
Validity (for truth) and demonstrability (for proof) have correlates in satisfiability and consistency [Burgess]
     Full Idea: Validity (truth by virtue of logical form alone) and demonstrability (provability by virtue of logical form alone) have correlative notions of logical possibility, 'satisfiability' and 'consistency', which come apart in some logics.
     From: John P. Burgess (Philosophical Logic [2009], 3.3)
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Models leave out meaning, and just focus on truth values [Burgess]
     Full Idea: Models generally deliberately leave out meaning, retaining only what is important for the determination of truth values.
     From: John P. Burgess (Philosophical Logic [2009], 2.2)
     A reaction: This is the key point to hang on to, if you are to avoid confusing mathematical models with models of things in the real world.
We only need to study mathematical models, since all other models are isomorphic to these [Burgess]
     Full Idea: In practice there is no need to consider any but mathematical models, models whose universes consist of mathematical objects, since every model is isomorphic to one of these.
     From: John P. Burgess (Philosophical Logic [2009], 1.8)
     A reaction: The crucial link is the technique of Gödel Numbering, which can translate any verbal formula into numerical form. He adds that, because of the Löwenheim-Skolem theorem only subsets of the natural numbers need be considered.
We aim to get the technical notion of truth in all models matching intuitive truth in all instances [Burgess]
     Full Idea: The aim in setting up a model theory is that the technical notion of truth in all models should agree with the intuitive notion of truth in all instances. A model is supposed to represent everything about an instance that matters for its truth.
     From: John P. Burgess (Philosophical Logic [2009], 3.2)
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
The Liar seems like a truth-value 'gap', but dialethists see it as a 'glut' [Burgess]
     Full Idea: It is a common view that the liar sentence ('This very sentence is not true') is an instance of a truth-value gap (neither true nor false), but some dialethists cite it as an example of a truth-value glut (both true and false).
     From: John P. Burgess (Philosophical Logic [2009], 5.7)
     A reaction: The defence of the glut view must be that it is true, then it is false, then it is true... Could it manage both at once?
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / c. Grelling's paradox
A 'heterological' predicate can't be predicated of itself; so is 'heterological' heterological? Yes=no! [Russell]
     Full Idea: A predicate is 'heterological' when it cannot be predicated of itself; thus 'long' is heterological because it is not a long word, but 'short' is homological. So is 'heterological' heterological? Either answer leads to a contradiction.
     From: Bertrand Russell (An Inquiry into Meaning and Truth [1940], 5)
     A reaction: [Grelling's Paradox] Yes: 'heterological' is heterological because it isn't heterological; No: it isn't, because it is. Russell says we therefore need a hierarchy of languages (types), and the word 'word' is outside the system.
10. Modality / A. Necessity / 4. De re / De dicto modality
De re modality seems to apply to objects a concept intended for sentences [Burgess]
     Full Idea: There is a problem over 'de re' modality (as contrasted with 'de dicto'), as in ∃x□x. What is meant by '"it is analytic that Px" is satisfied by a', given that analyticity is a notion that in the first instance applies to complete sentences?
     From: John P. Burgess (Philosophical Logic [2009], 3.9)
     A reaction: This is Burgess's summary of one of Quine's original objections. The issue may be a distinction between whether the sentence is analytic, and what makes it analytic. The necessity of bachelors being unmarried makes that sentence analytic.
10. Modality / A. Necessity / 6. Logical Necessity
General consensus is S5 for logical modality of validity, and S4 for proof [Burgess]
     Full Idea: To the extent that there is any conventional wisdom about the question, it is that S5 is correct for alethic logical modality, and S4 correct for apodictic logical modality.
     From: John P. Burgess (Philosophical Logic [2009], 3.8)
     A reaction: In classical logic these coincide, so presumably one should use the minimum system to do the job, which is S4 (?).
Logical necessity has two sides - validity and demonstrability - which coincide in classical logic [Burgess]
     Full Idea: Logical necessity is a genus with two species. For classical logic the truth-related notion of validity and the proof-related notion of demonstrability, coincide - but they are distinct concept. In some logics they come apart, in intension and extension.
     From: John P. Burgess (Philosophical Logic [2009], 3.3)
     A reaction: They coincide in classical logic because it is sound and complete. This strikes me as the correct approach to logical necessity, tying it to the actual nature of logic, rather than some handwavy notion of just 'true in all possible worlds'.
10. Modality / B. Possibility / 8. Conditionals / a. Conditionals
Three conditionals theories: Materialism (material conditional), Idealism (true=assertable), Nihilism (no truth) [Burgess]
     Full Idea: Three main theories of the truth of indicative conditionals are Materialism (the conditions are the same as for the material conditional), Idealism (identifying assertability with truth-value), and Nihilism (no truth, just assertability).
     From: John P. Burgess (Philosophical Logic [2009], 4.3)
It is doubtful whether the negation of a conditional has any clear meaning [Burgess]
     Full Idea: It is contentious whether conditionals have negations, and whether 'it is not the case that if A,B' has any clear meaning.
     From: John P. Burgess (Philosophical Logic [2009], 4.9)
     A reaction: This seems to be connected to Lewis's proof that a probability conditional cannot be reduced to a single proposition. If a conditional only applies to A-worlds, it is not surprising that its meaning gets lost when it leaves that world.
11. Knowledge Aims / A. Knowledge / 1. Knowledge
All our knowledge (if verbal) is general, because all sentences contain general words [Russell]
     Full Idea: All our knowledge about the world, in so far as it is expressed in words, is more or less general, because every sentence contains at least one word that is not a proper name, and all such words are general.
     From: Bertrand Russell (An Inquiry into Meaning and Truth [1940], 5)
     A reaction: I really like this, especially because it addresses the excessive reliance of some essentialists on sortals, categories and natural kinds, instead of focusing on the actual physical essences of individual objects.
11. Knowledge Aims / C. Knowing Reality / 1. Perceptual Realism / a. Naïve realism
Naïve realism leads to physics, but physics then shows that naïve realism is false [Russell]
     Full Idea: Naïve realism leads to physics, and physics, if true, shows that naïve realism is false. Therefore naïve realism, if true, is false, therefore it is false.
     From: Bertrand Russell (An Inquiry into Meaning and Truth [1940], p.13)
     A reaction: I'm inclined to agree with this, though once you have gone off and explored representation and sense data you may be driven back to naïve realism again.
12. Knowledge Sources / D. Empiricism / 1. Empiricism
For simple words, a single experience can show that they are true [Russell]
     Full Idea: So long as a man avoids words which are condensed inductions (such as 'dog'), and confines himself to words that can describe a single experience, it is possible for a single experience to show that his words are true.
     From: Bertrand Russell (An Inquiry into Meaning and Truth [1940], 5)
     A reaction: One might question whether a line can be drawn between the inductive and the non-inductive in this way. I'm inclined just to say that the simpler the proposition the less room there is for error in confirming it.
12. Knowledge Sources / D. Empiricism / 5. Empiricism Critique
Perception can't prove universal generalisations, so abandon them, or abandon empiricism? [Russell]
     Full Idea: Propositions about 'some' may be proved empirically, but propositions about 'all' are difficult to know, and can't be proved unless such propositions are in the premisses. These aren't in perception, so forgo general propositions, or abandon empiricism?
     From: Bertrand Russell (An Inquiry into Meaning and Truth [1940], 5)
     A reaction: This is obviously related to the difficulty empiricists have with induction. You could hardly persuade logicians to give up the universal quantifier, because it is needed in mathematics. Do we actually know any universal empirical truths?
20. Action / C. Motives for Action / 3. Acting on Reason / b. Intellectualism
A mother cat is paralysed if equidistant between two needy kittens [Russell]
     Full Idea: I once, to test the story of Buridan's Ass, put a cat exactly half-way between her two kittens, both too young to move: for a time she found the disjunction paralysing.
     From: Bertrand Russell (An Inquiry into Meaning and Truth [1940], 5)
     A reaction: Buridan's Ass is said to have starved between two equal piles of hay. Reason can't be the tie-breaker; reason obviously says 'choose one!', but intellectualism demands a reason for the one you choose.
25. Social Practice / E. Policies / 5. Education / b. Education principles
Learned men gain more in one day than others do in a lifetime [Posidonius]
     Full Idea: In a single day there lies open to men of learning more than there ever does to the unenlightened in the longest of lifetimes.
     From: Posidonius (fragments/reports [c.95 BCE]), quoted by Seneca the Younger - Letters from a Stoic 078
     A reaction: These remarks endorsing the infinite superiority of the educated to the uneducated seem to have been popular in late antiquity. It tends to be the religions which discourage great learning, especially in their emphasis on a single book.
27. Natural Reality / D. Time / 1. Nature of Time / d. Time as measure
Time is an interval of motion, or the measure of speed [Posidonius, by Stobaeus]
     Full Idea: Posidonius defined time thus: it is an interval of motion, or the measure of speed and slowness.
     From: report of Posidonius (fragments/reports [c.95 BCE]) by John Stobaeus - Anthology 1.08.42
     A reaction: Hm. Can we define motion or speed without alluding to time? Looks like we have to define them as a conjoined pair, which means we cannot fully understand either of them.