Combining Texts

All the ideas for 'fragments/reports', 'Regressive Method for Premises in Mathematics' and 'Number Determiners, Numbers, Arithmetic'

unexpand these ideas     |    start again     |     specify just one area for these texts


24 ideas

1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / e. Philosophy as reason
Discoveries in mathematics can challenge philosophy, and offer it a new foundation [Russell]
     Full Idea: Any new discovery as to mathematical method and principles is likely to upset a great deal of otherwise plausible philosophising, as well as to suggest a new philosophy which will be solid in proportion as its foundations in mathematics are securely laid.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.283)
     A reaction: This is a manifesto for modern analytic philosophy. I'm not convinced, especially if a fictionalist view of maths is plausible. What Russell wants is rigour, but there are other ways of getting that. Currently I favour artificial intelligence.
2. Reason / A. Nature of Reason / 6. Coherence
If one proposition is deduced from another, they are more certain together than alone [Russell]
     Full Idea: Two obvious propositions of which one can be deduced from the other both become more certain than either in isolation; thus in a complicated deductive system, many parts of which are obvious, the total probability may become all but absolute certainty.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.279)
     A reaction: Thagard picked this remark out, in support of his work on coherence.
2. Reason / B. Laws of Thought / 3. Non-Contradiction
Non-contradiction was learned from instances, and then found to be indubitable [Russell]
     Full Idea: The law of contradiction must have been originally discovered by generalising from instances, though, once discovered, it was found to be quite as indubitable as the instances.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.274)
5. Theory of Logic / F. Referring in Logic / 1. Naming / d. Singular terms
An adjective contributes semantically to a noun phrase [Hofweber]
     Full Idea: The semantic value of a determiner (an adjective) is a function from semantic values to nouns to semantic values of full noun phrases.
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §3.1)
     A reaction: This kind of states the obvious (assuming one has a compositional view of sentences), but his point is that you can't just eliminate adjectival uses of numbers by analysing them away, as if they didn't do anything.
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Quantifiers for domains and for inference come apart if there are no entities [Hofweber]
     Full Idea: Quantifiers have two functions in communication - to range over a domain of entities, and to have an inferential role (e.g. F(t)→'something is F'). In ordinary language these two come apart for singular terms not standing for any entities.
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §6.3)
     A reaction: This simple observations seems to me to be wonderfully illuminating of a whole raft of problems, the sort which logicians get steamed up about, and ordinary speakers don't. Context is the key to 90% of philosophical difficulties (?). See Idea 10008.
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Which premises are ultimate varies with context [Russell]
     Full Idea: Premises which are ultimate in one investigation may cease to be so in another.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.273)
The sources of a proof are the reasons why we believe its conclusion [Russell]
     Full Idea: In mathematics, except in the earliest parts, the propositions from which a given proposition is deduced generally give the reason why we believe the given proposition.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.273)
Finding the axioms may be the only route to some new results [Russell]
     Full Idea: The premises [of a science] ...are pretty certain to lead to a number of new results which could not otherwise have been known.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.282)
     A reaction: I identify this as the 'fruitfulness' that results when the essence of something is discovered.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
What is the relation of number words as singular-terms, adjectives/determiners, and symbols? [Hofweber]
     Full Idea: There are three different uses of the number words: the singular-term use (as in 'the number of moons of Jupiter is four'), the adjectival (or determiner) use (as in 'Jupiter has four moons'), and the symbolic use (as in '4'). How are they related?
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §1)
     A reaction: A classic philosophy of language approach to the problem - try to give the truth-conditions for all three types. The main problem is that the first one implies that numbers are objects, whereas the others do not. Why did Frege give priority to the first?
'2 + 2 = 4' can be read as either singular or plural [Hofweber]
     Full Idea: There are two ways to read to read '2 + 2 = 4', as singular ('two and two is four'), and as plural ('two and two are four').
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §4.1)
     A reaction: Hofweber doesn't notice that this phenomenon occurs elsewhere in English. 'The team is playing well', or 'the team are splitting up'; it simply depends whether you are holding the group in though as an entity, or as individuals. Important for numbers.
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
It seems absurd to prove 2+2=4, where the conclusion is more certain than premises [Russell]
     Full Idea: It is an apparent absurdity in proceeding ...through many rather recondite propositions of symbolic logic, to the 'proof' of such truisms as 2+2=4: for it is plain that the conclusion is more certain than the premises, and the supposed proof seems futile.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.272)
     A reaction: Famously, 'Principia Mathematica' proved this fact at enormous length. I wonder if this thought led Moore to his common sense view of his own hand - the conclusion being better than the sceptical arguments?
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Why is arithmetic hard to learn, but then becomes easy? [Hofweber]
     Full Idea: Why is arithmetic so hard to learn, and why does it seem so easy to us now? For example, subtracting 789 from 26,789.
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §4.2)
     A reaction: His answer that we find thinking about objects very easy, but as children we have to learn with difficulty the conversion of the determiner/adjectival number words, so that we come to think of them as objects.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Arithmetic is not about a domain of entities, as the quantifiers are purely inferential [Hofweber]
     Full Idea: I argue for an internalist conception of arithmetic. Arithmetic is not about a domain of entities, not even quantified entities. Quantifiers over natural numbers occur in their inferential-role reading in which they merely generalize over the instances.
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §6.3)
     A reaction: Hofweber offers the hope that modern semantics can disentangle the confusions in platonist arithmetic. Very interesting. The fear is that after digging into the semantics for twenty years, you find the same old problems re-emerging at a lower level.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Arithmetic was probably inferred from relationships between physical objects [Russell]
     Full Idea: When 2 + 2 =4 was first discovered, it was probably inferred from the case of sheep and other concrete cases.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.272)
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
Arithmetic doesn’t simply depend on objects, since it is true of fictional objects [Hofweber]
     Full Idea: That 'two dogs are more than one' is clearly true, but its truth doesn't depend on the existence of dogs, as is seen if we consider 'two unicorns are more than one', which is true even though there are no unicorns.
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §6.2)
     A reaction: This is an objection to crude empirical accounts of arithmetic, but the idea would be that there is a generalisation drawn from objects (dogs will do nicely), which then apply to any entities. If unicorns are entities, it will be true of them.
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
We might eliminate adjectival numbers by analysing them into blocks of quantifiers [Hofweber]
     Full Idea: Determiner uses of number words may disappear on analysis. This is inspired by Russell's elimination of the word 'the'. The number becomes blocks of first-order quantifiers at the level of semantic representation.
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §2)
     A reaction: [compressed] The proposal comes from platonists, who argue that numbers cannot be analysed away if they are objects. Hofweber says the analogy with Russell is wrong, as 'the' can't occur in different syntactic positions, the way number words can.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
First-order logic captures the inferential relations of numbers, but not the semantics [Hofweber]
     Full Idea: Representing arithmetic formally we do not primarily care about semantic features of number words. We are interested in capturing the inferential relations of arithmetical statements to one another, which can be done elegantly in first-order logic.
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §6.3)
     A reaction: This begins to pinpoint the difference between the approach of logicists like Frege, and those who are interested in the psychology of numbers, and the empirical roots of numbers in the process of counting.
11. Knowledge Aims / B. Certain Knowledge / 3. Fallibilism
The most obvious beliefs are not infallible, as other obvious beliefs may conflict [Russell]
     Full Idea: Even where there is the highest degree of obviousness, we cannot assume that we are infallible - a sufficient conflict with other obvious propositions may lead us to abandon our belief, as in the case of a hallucination afterwards recognised as such.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.279)
     A reaction: This approach to fallibilism seems to arise from the paradox that undermined Frege's rather obvious looking axioms. After Peirce and Russell, fallibilism has become a secure norm of modern thought.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / a. Coherence as justification
Believing a whole science is more than believing each of its propositions [Russell]
     Full Idea: Although intrinsic obviousness is the basis of every science, it is never, in a fairly advanced science, the whole of our reason for believing any one proposition of the science.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.279)
14. Science / C. Induction / 2. Aims of Induction
Induction is inferring premises from consequences [Russell]
     Full Idea: The inferring of premises from consequences is the essence of induction.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.274)
     A reaction: So induction is just deduction in reverse? Induction is transcendental deduction? Do I deduce the premises from observing a lot of white swans? Hm.
15. Nature of Minds / C. Capacities of Minds / 4. Objectification
Our minds are at their best when reasoning about objects [Hofweber]
     Full Idea: Our minds mainly reason about objects. Most cognitive problems we are faced with deal with particular objects, whether they are people or material things. Reasoning about them is what our minds are good at.
     From: Thomas Hofweber (Number Determiners, Numbers, Arithmetic [2005], §4.3)
     A reaction: Hofweber is suggesting this as an explanation of why we continually reify various concepts, especially numbers. Very plausible. It works for qualities of character, and explains our tendency to talk about universals as objects ('redness').
25. Social Practice / E. Policies / 5. Education / b. Education principles
Learned men gain more in one day than others do in a lifetime [Posidonius]
     Full Idea: In a single day there lies open to men of learning more than there ever does to the unenlightened in the longest of lifetimes.
     From: Posidonius (fragments/reports [c.95 BCE]), quoted by Seneca the Younger - Letters from a Stoic 078
     A reaction: These remarks endorsing the infinite superiority of the educated to the uneducated seem to have been popular in late antiquity. It tends to be the religions which discourage great learning, especially in their emphasis on a single book.
26. Natural Theory / D. Laws of Nature / 1. Laws of Nature
The law of gravity has many consequences beyond its grounding observations [Russell]
     Full Idea: The law of gravitation leads to many consequences which could not be discovered merely from the apparent motions of the heavenly bodies.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.275)
27. Natural Reality / D. Time / 1. Nature of Time / d. Time as measure
Time is an interval of motion, or the measure of speed [Posidonius, by Stobaeus]
     Full Idea: Posidonius defined time thus: it is an interval of motion, or the measure of speed and slowness.
     From: report of Posidonius (fragments/reports [c.95 BCE]) by John Stobaeus - Anthology 1.08.42
     A reaction: Hm. Can we define motion or speed without alluding to time? Looks like we have to define them as a conjoined pair, which means we cannot fully understand either of them.