Combining Texts

All the ideas for 'fragments/reports', 'Reality is Not What it Seems' and 'Definitions'

unexpand these ideas     |    start again     |     specify just one area for these texts


28 ideas

2. Reason / D. Definition / 1. Definitions
Definitions usually have a term, a 'definiendum' containing the term, and a defining 'definiens' [Gupta]
     Full Idea: Many definitions have three elements: the term that is defined, an expression containing the defined term (the 'definiendum'), and another expression (the 'definiens') that is equated by the definition with this expression.
     From: Anil Gupta (Definitions [2008], 2)
     A reaction: He notes that the definiendum and the definiens are assumed to be in the 'same logical category', which is a right can of worms.
Notable definitions have been of piety (Plato), God (Anselm), number (Frege), and truth (Tarski) [Gupta]
     Full Idea: Notable examples of definitions in philosophy have been Plato's (e.g. of piety, in 'Euthyphro'), Anselm's definition of God, the Frege-Russell definition of number, and Tarski's definition of truth.
     From: Anil Gupta (Definitions [2008], Intro)
     A reaction: All of these are notable for the extensive metaphysical conclusions which then flow from what seems like a fairly neutral definition. We would expect that if we were defining essences, but not if we were just defining word usage.
2. Reason / D. Definition / 2. Aims of Definition
A definition needs to apply to the same object across possible worlds [Gupta]
     Full Idea: In a modal logic in which names are non-vacuous and rigid, not only must existence and uniqueness in a definition be shown to hold necessarily, it must be shown that the definiens is satisfied by the same object across possible worlds.
     From: Anil Gupta (Definitions [2008], 2.4)
The 'revision theory' says that definitions are rules for improving output [Gupta]
     Full Idea: The 'revision theory' of definitions says definitions impart a hypothetical character, giving a rule of revision rather than a rule of application. ...The output interpretation is better than the input one.
     From: Anil Gupta (Definitions [2008], 2.7)
     A reaction: Gupta mentions the question of whether such definitions can extend into the trans-finite.
2. Reason / D. Definition / 3. Types of Definition
Traditional definitions are general identities, which are sentential and reductive [Gupta]
     Full Idea: Traditional definitions are generalized identities (so definiendum and definiens can replace each other), in which the sentential is primary (for use in argument), and they involve reduction (and hence eliminability in a ground language).
     From: Anil Gupta (Definitions [2008], 2.2)
Traditional definitions need: same category, mention of the term, and conservativeness and eliminability [Gupta]
     Full Idea: A traditional definition requires that the definiendum contains the defined term, that definiendum and definiens are of the same logical category, and the definition is conservative (adding nothing new), and makes elimination possible.
     From: Anil Gupta (Definitions [2008], 2.4)
A definition can be 'extensionally', 'intensionally' or 'sense' adequate [Gupta]
     Full Idea: A definition is 'extensionally adequate' iff there are no actual counterexamples to it. It is 'intensionally adequate' iff there are no possible counterexamples to it. It is 'sense adequate' (or 'analytic') iff it endows the term with the right sense.
     From: Anil Gupta (Definitions [2008], 1.4)
2. Reason / D. Definition / 4. Real Definition
Chemists aim at real definition of things; lexicographers aim at nominal definition of usage [Gupta]
     Full Idea: The chemist aims at real definition, whereas the lexicographer aims at nominal definition. ...Perhaps real definitions investigate the thing denoted, and nominal definitions investigate meaning and use.
     From: Anil Gupta (Definitions [2008], 1.1)
     A reaction: Very helpful. I really think we should talk much more about the neglected chemists when we discuss science. Theirs is the single most successful branch of science, the paradigm case of what the whole enterprise aims at.
2. Reason / D. Definition / 6. Definition by Essence
If definitions aim at different ideals, then defining essence is not a unitary activity [Gupta]
     Full Idea: Some definitions aim at precision, others at fairness, or at accuracy, or at clarity, or at fecundity. But if definitions 'give the essence of things' (the Aristotelian formula), then it may not be a unitary kind of activity.
     From: Anil Gupta (Definitions [2008], 1)
     A reaction: We don't have to accept this conclusion so quickly. Human interests may shift the emphasis, but there may be a single ideal definition of which these various examples are mere parts.
2. Reason / D. Definition / 10. Stipulative Definition
Stipulative definition assigns meaning to a term, ignoring prior meanings [Gupta]
     Full Idea: Stipulative definition imparts a meaning to the defined term, and involves no commitment that the assigned meaning agrees with prior uses (if any) of the term
     From: Anil Gupta (Definitions [2008], 1.3)
     A reaction: A nice question is how far one can go in stretching received usage. If I define 'democracy' as 'everyone is involved in decisions', that is sort of right, but pushing the boundaries (children, criminals etc).
2. Reason / D. Definition / 11. Ostensive Definition
Ostensive definitions look simple, but are complex and barely explicable [Gupta]
     Full Idea: Ostensive definitions look simple (say 'this stick is one meter long', while showing a stick), but they are effective only because a complex linguistic and conceptual capacity is operative in the background, of which it is hard to give an account.
     From: Anil Gupta (Definitions [2008], 1.2)
     A reaction: The full horror of the situation is brought out in Quine's 'gavagai' example (Idea 6312)
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
The ordered pair <x,y> is defined as the set {{x},{x,y}}, capturing function, not meaning [Gupta]
     Full Idea: The ordered pair <x,y> is defined as the set {{x},{x,y}}. This does captures its essential uses. Pairs <x,y> <u,v> are identical iff x=u and y=v, and the definition satisfies this. Function matters here, not meaning.
     From: Anil Gupta (Definitions [2008], 1.5)
     A reaction: This is offered as an example of Carnap's 'explications', rather than pure definitions. Quine extols it as a philosophical paradigm (1960:§53).
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / a. Achilles paradox
Zeno assumes collecting an infinity of things makes an infinite thing [Rovelli]
     Full Idea: One possible answer is that Zeno is wrong because it is not true that by accumulating an infinite number of things one ends up with an infinite thing.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 01)
     A reaction: I do love it when deep and complex ideas are expressed with perfect simplicity. As long as the simple version is correct.
7. Existence / B. Change in Existence / 2. Processes
Quantum mechanics deals with processes, rather than with things [Rovelli]
     Full Idea: Quantum mechanics teaches us not to think about the world in terms of 'things' which are in this or that state, but in terms of 'processes' instead.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 04)
7. Existence / B. Change in Existence / 4. Events / b. Events as primitive
Quantum mechanics describes the world entirely as events [Rovelli]
     Full Idea: The world of quantum mechanics is not a world of objects: it is a world of events.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 04)
     A reaction: I presume a philosopher is allowed to ask what an 'event' is. Since, as Rovelli tells it, time is eliminated from the picture, events seem to be unanalysable primitives.
25. Social Practice / E. Policies / 5. Education / b. Education principles
Learned men gain more in one day than others do in a lifetime [Posidonius]
     Full Idea: In a single day there lies open to men of learning more than there ever does to the unenlightened in the longest of lifetimes.
     From: Posidonius (fragments/reports [c.95 BCE]), quoted by Seneca the Younger - Letters from a Stoic 078
     A reaction: These remarks endorsing the infinite superiority of the educated to the uneducated seem to have been popular in late antiquity. It tends to be the religions which discourage great learning, especially in their emphasis on a single book.
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
There are probably no infinities, and 'infinite' names what we do not yet know [Rovelli]
     Full Idea: 'Infinite', ultimately, is the name that we give to what we do not yet know. Nature appears to be telling us that there is nothing truly infinite.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 11)
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / d. The unlimited
The basic ideas of fields and particles are merged in quantum mechanics [Rovelli]
     Full Idea: The notions of fields and particles, separated by Faraday and Maxwell, end up merging in quantum mechanics.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 04)
     A reaction: This sounds to me just like Anaximander's 'apeiron' - the unlimited [Rovelli agrees! p.168]. Anaximander predicted the wall which enquiry would hit, but we now have more detail.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / b. Fields
Because it is quantised, a field behaves like a set of packets of energy [Rovelli]
     Full Idea: Since the energy of the electromagnetic field can take on only certain values, the field behaves like a set of packets of energy.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 04)
There are about fifteen particles fields, plus a few force fields [Rovelli]
     Full Idea: There are about fifteen fields, whose quanta are elementary particles (electrons, quarks, muons, neutrinos, Higgs, and little else), plus a few fields similar to the electromagnetic one, which describe forces at a nuclear scale, with quanta like photons.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 04)
     A reaction: According to Rovelli, this sentence describes the essence of physical reality.
The world consists of quantum fields, with elementary events happening in spacetime [Rovelli]
     Full Idea: The world is not made up of fields and particles, but of a single type of entity: the quantum field. There are no longer particles which move in space with the passage of time, but quantum fields whose elementary events happen in spacetime.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 04)
     A reaction: If you are not a scientist, there is (I find) a strong tendency to read and digest stuff like this, and then forget it the next day, because it so far from our experience. Folk like me have to develop two parallel views of the nature of reality.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / c. Electrons
Electrons only exist when they interact, and their being is their combination of quantum leaps [Rovelli]
     Full Idea: Electrons don't always exist. They exist when they interact. They materialize when they collide with something. The quantum leap from one orbit to another constitutes their way of being real. An electron is a combination of leaps between interactions.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 04)
     A reaction: If a philosopher with an Aristotelian interest in the nature of matter wants to grasp the modern view, the electron looks like the thing to focus on. You can feel Rovelli battling here to find formulations that might satisfy a philosopher.
Electrons are not waves, because their collisions are at a point, and not spread out [Rovelli]
     Full Idea: Schrödinger's wave is a bad image for an electron, because when a particle collides with something else, it is always at a point: it is never spread out in space like a wave.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 04 note)
     A reaction: And yet there is the diffusion in the two-slit experiment, which Thomas Young discovered for light. I must take Rovelli's word for this.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / d. Quantum mechanics
Quantum Theory describes events and possible interactions - not how things are [Rovelli]
     Full Idea: Quantum Theory does not describe things as they are: it describes how things occur and interact with each other. It doesn't describe where there is a particle but how it shows itself to others. The world of existence is reduced to possible interactions.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 04)
     A reaction: Fans of 'process philosophy' should like this, though he is not denying that there may be facts about how things are - it is just that this is not mentioned in the theory. There is not much point in philosophers yearning to know the reality.
27. Natural Reality / B. Modern Physics / 4. Standard Model / a. Concept of matter
Nature has three aspects: granularity, indeterminacy, and relations [Rovelli]
     Full Idea: I think that quantum mechanics has revealed three aspects of the nature of things: granularity, indeterminacy, and the relational structure of the world.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 04)
27. Natural Reality / C. Space / 4. Substantival Space
The world is just particles plus fields; space is the gravitational field [Rovelli]
     Full Idea: The world is made up of particles + fields, and nothing else; there is no need to add space as an extra ingredient. Newton's space is the gravitational field.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 03)
     A reaction: I get the impression that particles are just bumps or waves in the fields [yes! Rovelli p.110], which would mean there are fields and nothing else. And no one seems to know what a field is.
27. Natural Reality / D. Time / 1. Nature of Time / d. Time as measure
Time is an interval of motion, or the measure of speed [Posidonius, by Stobaeus]
     Full Idea: Posidonius defined time thus: it is an interval of motion, or the measure of speed and slowness.
     From: report of Posidonius (fragments/reports [c.95 BCE]) by John Stobaeus - Anthology 1.08.42
     A reaction: Hm. Can we define motion or speed without alluding to time? Looks like we have to define them as a conjoined pair, which means we cannot fully understand either of them.
27. Natural Reality / D. Time / 2. Passage of Time / g. Time's arrow
Only heat distinguishes past from future [Rovelli]
     Full Idea: It is always heat and only heat that distinguishes the past from the future.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 12)
     A reaction: I can remember the past but not the future - so can that fact be reduced to facts about heat?