Combining Texts

All the ideas for 'fragments/reports', 'Properties and Predicates' and 'Defending the Axioms'

unexpand these ideas     |    start again     |     specify just one area for these texts


14 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice paradoxically allows decomposing a sphere into two identical spheres [Maddy]
     Full Idea: One feature of the Axiom of Choice that troubled many mathematicians was the so-called Banach-Tarski paradox: using the Axiom, a sphere can be decomposed into finitely many parts and those parts reassembled into two spheres the same size as the original.
     From: Penelope Maddy (Defending the Axioms [2011], 1.3)
     A reaction: (The key is that the parts are non-measurable). To an outsider it is puzzling that the Axiom has been universally accepted, even though it produces such a result. Someone can explain that, I'm sure.
5. Theory of Logic / C. Ontology of Logic / 3. If-Thenism
Critics of if-thenism say that not all starting points, even consistent ones, are worth studying [Maddy]
     Full Idea: If-thenism denies that mathematics is in the business of discovering truths about abstracta. ...[their opponents] obviously don't regard any starting point, even a consistent one, as equally worthy of investigation.
     From: Penelope Maddy (Defending the Axioms [2011], 3.3)
     A reaction: I have some sympathy with if-thenism, in that you can obviously study the implications of any 'if' you like, but deep down I agree with the critics.
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Hilbert's geometry and Dedekind's real numbers were role models for axiomatization [Maddy]
     Full Idea: At the end of the nineteenth century there was a renewed emphasis on rigor, the central tool of which was axiomatization, along the lines of Hilbert's axioms for geometry and Dedekind's axioms for real numbers.
     From: Penelope Maddy (Defending the Axioms [2011], 1.3)
If two mathematical themes coincide, that suggest a single deep truth [Maddy]
     Full Idea: The fact that two apparently fruitful mathematical themes turn out to coincide makes it all the more likely that they're tracking a genuine strain of mathematical depth.
     From: Penelope Maddy (Defending the Axioms [2011], 5.3ii)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
Every infinite set of reals is either countable or of the same size as the full set of reals [Maddy]
     Full Idea: One form of the Continuum Hypothesis is the claim that every infinite set of reals is either countable or of the same size as the full set of reals.
     From: Penelope Maddy (Defending the Axioms [2011], 2.4 n40)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory tracks the contours of mathematical depth and fruitfulness [Maddy]
     Full Idea: Our set-theoretic methods track the underlying contours of mathematical depth. ...What sets are, most fundamentally, is markers for these contours ...they are maximally effective trackers of certain trains of mathematical fruitfulness.
     From: Penelope Maddy (Defending the Axioms [2011], 3.4)
     A reaction: This seems to make it more like a map of mathematics than the actual essence of mathematics.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
The connection of arithmetic to perception has been idealised away in modern infinitary mathematics [Maddy]
     Full Idea: Ordinary perceptual cognition is most likely involved in our grasp of elementary arithmetic, but ...this connection to the physical world has long since been idealized away in the infinitary structures of contemporary pure mathematics.
     From: Penelope Maddy (Defending the Axioms [2011], 2.3)
     A reaction: Despite this, Maddy's quest is for a 'naturalistic' account of mathematics. She ends up defending 'objectivity' (and invoking Tyler Burge), rather than even modest realism. You can't 'idealise away' the counting of objects. I blame Cantor.
8. Modes of Existence / B. Properties / 2. Need for Properties
A property is merely a constituent of laws of nature; temperature is just part of thermodynamics [Mellor]
     Full Idea: Being a constituent of probabilistic laws of nature is all there is to being a property. There is no more to temperature than the thermodynamics and other laws they occur in.
     From: D.H. Mellor (Properties and Predicates [1991], 'Props')
     A reaction: How could thermodynamics be worked out without a prior concept of temperature? I think it is at least plausible to deny that there are any 'laws' of nature. But even Quine can't deny that some things are too hot to touch.
8. Modes of Existence / B. Properties / 10. Properties as Predicates
There is obviously a possible predicate for every property [Mellor]
     Full Idea: To every property there obviously corresponds a possible predicate applying to all and only those particulars with that property.
     From: D.H. Mellor (Properties and Predicates [1991], 'Intro')
     A reaction: This doesn't strike me as at all obvious. If nature dictates the properties, there may be vastly more than any human language could cope with. It is daft to say that a property can only exist if humanity can come up with a predicate for it.
8. Modes of Existence / D. Universals / 2. Need for Universals
We need universals for causation and laws of nature; the latter give them their identity [Mellor]
     Full Idea: I take the main reason for believing in contingent universals to be the roles they play in causation and in laws of nature, and those laws are what I take to give those universals their identity.
     From: D.H. Mellor (Properties and Predicates [1991], 'Props')
     A reaction: He agrees with Armstrong. Sounds a bit circular - laws are built on universals, and universals are identified by laws. It resembles a functionalist account of mental events. I think it is wrong. A different account of laws will be needed...
8. Modes of Existence / E. Nominalism / 3. Predicate Nominalism
If properties were just the meanings of predicates, they couldn't give predicates their meaning [Mellor]
     Full Idea: One reason for denying that properties just are the meanings of our predicates is that, if they were, they could not give our predicates their meanings.
     From: D.H. Mellor (Properties and Predicates [1991], 'Props')
     A reaction: Neither way round sounds quite right to me. Predicate nominalism is wrong, but what is meant by a property 'giving' a predicate its meaning? It doesn't seem to allow room for error in our attempts to name the properties.
25. Social Practice / E. Policies / 5. Education / b. Education principles
Learned men gain more in one day than others do in a lifetime [Posidonius]
     Full Idea: In a single day there lies open to men of learning more than there ever does to the unenlightened in the longest of lifetimes.
     From: Posidonius (fragments/reports [c.95 BCE]), quoted by Seneca the Younger - Letters from a Stoic 078
     A reaction: These remarks endorsing the infinite superiority of the educated to the uneducated seem to have been popular in late antiquity. It tends to be the religions which discourage great learning, especially in their emphasis on a single book.
26. Natural Theory / C. Causation / 8. Particular Causation / e. Probabilistic causation
Singular causation requires causes to raise the physical probability of their effects [Mellor]
     Full Idea: Singular causation entails physical probabilities or chances. ...Causal laws require causes to raise their effects' chances, as when fires have a greater chance of occurring when explosions do.
     From: D.H. Mellor (Properties and Predicates [1991], 'Props')
     A reaction: It seems fairly obvious that a probability can be increased without actually causing something. Just after a harmless explosion is a good moment for arsonists, especially if Mellor will be the investigating officer.
27. Natural Reality / D. Time / 1. Nature of Time / d. Time as measure
Time is an interval of motion, or the measure of speed [Posidonius, by Stobaeus]
     Full Idea: Posidonius defined time thus: it is an interval of motion, or the measure of speed and slowness.
     From: report of Posidonius (fragments/reports [c.95 BCE]) by John Stobaeus - Anthology 1.08.42
     A reaction: Hm. Can we define motion or speed without alluding to time? Looks like we have to define them as a conjoined pair, which means we cannot fully understand either of them.