Combining Texts

All the ideas for 'fragments/reports', 'Mathematics is Megethology' and 'Katzav on limitations of dispositions'

unexpand these ideas     |    start again     |     specify just one area for these texts


18 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematics reduces to set theory, which reduces, with some mereology, to the singleton function [Lewis]
     Full Idea: It is generally accepted that mathematics reduces to set theory, and I argue that set theory in turn reduces, with some aid of mereology, to the theory of the singleton function.
     From: David Lewis (Mathematics is Megethology [1993], p.03)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
We can accept the null set, but not a null class, a class lacking members [Lewis]
     Full Idea: In my usage of 'class', there is no such things as the null class. I don't mind calling some memberless thing - some individual - the null set. But that doesn't make it a memberless class. Rather, that makes it a 'set' that is not a class.
     From: David Lewis (Mathematics is Megethology [1993], p.05)
     A reaction: Lewis calls this usage 'idiosyncratic', but it strikes me as excellent. Set theorists can have their vital null class, and sensible people can be left to say, with Lewis, that classes of things must have members.
The null set plays the role of last resort, for class abstracts and for existence [Lewis]
     Full Idea: The null set serves two useful purposes. It is a denotation of last resort for class abstracts that denote no nonempty class. And it is an individual of last resort: we can count on its existence, and fearlessly build the hierarchy of sets from it.
     From: David Lewis (Mathematics is Megethology [1993], p.09)
     A reaction: This passage assuages my major reservation about the existence of the null set, but at the expense of confirming that it must be taken as an entirely fictional entity.
The null set is not a little speck of sheer nothingness, a black hole in Reality [Lewis]
     Full Idea: Should we accept the null set as a most extraordinary individual, a little speck of sheer nothingness, a sort of black hole in the fabric of Reality itself? Not that either, I think.
     From: David Lewis (Mathematics is Megethology [1993], p.09)
     A reaction: Correct!
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
What on earth is the relationship between a singleton and an element? [Lewis]
     Full Idea: A new student of set theory has just one thing, the element, and he has another single thing, the singleton, and not the slightest guidance about what one thing has to do with the other.
     From: David Lewis (Mathematics is Megethology [1993], p.12)
Are all singletons exact intrinsic duplicates? [Lewis]
     Full Idea: Are all singletons exact intrinsic duplicates?
     From: David Lewis (Mathematics is Megethology [1993], p.13)
4. Formal Logic / G. Formal Mereology / 1. Mereology
Megethology is the result of adding plural quantification to mereology [Lewis]
     Full Idea: Megethology is the result of adding plural quantification, as advocated by George Boolos, to the language of mereology.
     From: David Lewis (Mathematics is Megethology [1993], p.03)
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
We can use mereology to simulate quantification over relations [Lewis]
     Full Idea: We can simulate quantification over relations using megethology. Roughly, a quantifier over relations is a plural quantifier over things that encode ordered pairs by mereological means.
     From: David Lewis (Mathematics is Megethology [1993], p.18)
     A reaction: [He credits this idea to Burgess and Haven] The point is to avoid second-order logic, which quantifies over relations as ordered n-tuple sets.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Mathematics is generalisations about singleton functions [Lewis]
     Full Idea: We can take the theory of singleton functions, and hence set theory, and hence mathematics, to consist of generalisations about all singleton functions.
     From: David Lewis (Mathematics is Megethology [1993], p.03)
     A reaction: At first glance this sounds like a fancy version of the somewhat discredited Greek idea that mathematics is built on the concept of a 'unit'.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
We don't need 'abstract structures' to have structural truths about successor functions [Lewis]
     Full Idea: We needn't believe in 'abstract structures' to have general structural truths about all successor functions.
     From: David Lewis (Mathematics is Megethology [1993], p.16)
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
I say that absolutely any things can have a mereological fusion [Lewis]
     Full Idea: I accept the principle of Unrestricted Composition: whenever there are some things, no matter how many or how unrelated or how disparate in character they may be, they have a mereological fusion. ...The trout-turkey is part fish and part fowl.
     From: David Lewis (Mathematics is Megethology [1993], p.07)
     A reaction: This nicely ducks the question of when things form natural wholes and when they don't, but I would have thought that that might be one of the central issues of metaphysicals, so I think I'll give Lewis's principle a miss.
25. Social Practice / E. Policies / 5. Education / b. Education principles
Learned men gain more in one day than others do in a lifetime [Posidonius]
     Full Idea: In a single day there lies open to men of learning more than there ever does to the unenlightened in the longest of lifetimes.
     From: Posidonius (fragments/reports [c.95 BCE]), quoted by Seneca the Younger - Letters from a Stoic 078
     A reaction: These remarks endorsing the infinite superiority of the educated to the uneducated seem to have been popular in late antiquity. It tends to be the religions which discourage great learning, especially in their emphasis on a single book.
26. Natural Theory / B. Natural Kinds / 1. Natural Kinds
The natural kinds are objects, processes and properties/relations [Ellis]
     Full Idea: There are three hierarchies of natural kinds: objects or substances (substantive universals), events or processes (dynamic universals), and properties or relations (tropic universals).
     From: Brian Ellis (Katzav on limitations of dispositions [2005], 91)
     A reaction: Most interesting here is the identifying of natural kinds with universals, making universals into the families of nature. Universals are high-level sets of natural kinds. To grasp universals you must see patterns, and infer the underlying order.
26. Natural Theory / D. Laws of Nature / 2. Types of Laws
Least action is not a causal law, but a 'global law', describing a global essence [Ellis]
     Full Idea: The principle of least action is not a causal law, but is what I call a 'global law', which describes the essence of the global kind, which every object in the universe necessarily instantiates.
     From: Brian Ellis (Katzav on limitations of dispositions [2005])
     A reaction: As a fan of essentialism I find this persuasive. If I inherit part of my essence from being a mammal, I inherit other parts of my essence from being an object, and all objects would share that essence, so it would look like a 'law' for all objects.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / a. Scientific essentialism
A species requires a genus, and its essence includes the essence of the genus [Ellis]
     Full Idea: A specific universal can exist only if the generic universal of which it is a species exists, but generic universals don't depend on species; …the essence of any genus is included in its species, but not conversely.
     From: Brian Ellis (Katzav on limitations of dispositions [2005], 91)
     A reaction: Thus the species 'electron' would be part of the genus 'lepton', or 'human' part of 'mammal'. The point of all this is to show how individual items connect up with the rest of the universe, giving rise to universal laws, such as Least Action.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / c. Essence and laws
A hierarchy of natural kinds is elaborate ontology, but needed to explain natural laws [Ellis]
     Full Idea: The hierarchy of natural kinds proposed by essentialism may be more elaborate than is strictly required for purposes of ontology, but it is necessary to explain the necessity of the laws of nature, and the universal applicability of global principles.
     From: Brian Ellis (Katzav on limitations of dispositions [2005], 91)
     A reaction: I am all in favour of elaborating ontology in the name of best explanation. There seem, though, to be some remaining ontological questions at the point where the explanations of essentialism run out.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / d. Knowing essences
Without general principles, we couldn't predict the behaviour of dispositional properties [Ellis]
     Full Idea: It is objected to dispositionalism that without the principle of least action, or some general principle of equal power, the specific dispositional properties of things could tell us very little about how these things would be disposed to behave.
     From: Brian Ellis (Katzav on limitations of dispositions [2005], 90)
     A reaction: Ellis attempts to meet this criticism, by placing dispositional properties within a hierarchy of broader properties. There remains a nagging doubt about how essentialism can account for space, time, order, and the existence of essences.
27. Natural Reality / D. Time / 1. Nature of Time / d. Time as measure
Time is an interval of motion, or the measure of speed [Posidonius, by Stobaeus]
     Full Idea: Posidonius defined time thus: it is an interval of motion, or the measure of speed and slowness.
     From: report of Posidonius (fragments/reports [c.95 BCE]) by John Stobaeus - Anthology 1.08.42
     A reaction: Hm. Can we define motion or speed without alluding to time? Looks like we have to define them as a conjoined pair, which means we cannot fully understand either of them.