Combining Texts

All the ideas for 'fragments/reports', 'Structures and Structuralism in Phil of Maths' and 'Briefings on Existence'

unexpand these ideas     |    start again     |     specify just one area for these texts


44 ideas

1. Philosophy / C. History of Philosophy / 5. Modern Philosophy / c. Modern philosophy mid-period
In ontology, logic dominated language, until logic was mathematized [Badiou]
     Full Idea: From Aristotle to Hegel, logic was the philosophical category of ontology's dominion over language. The mathematization of logic has authorized language to become that which seizes philosophy for itself.
     From: Alain Badiou (Briefings on Existence [1998], 8)
1. Philosophy / D. Nature of Philosophy / 8. Humour
The female body, when taken in its entirety, is the Phallus itself [Badiou]
     Full Idea: The female body, when taken in its entirety, is the Phallus itself.
     From: Alain Badiou (Briefings on Existence [1998])
     A reaction: Too good to pass over, too crazy to file sensibly, too creepy to have been filed under humour, my candidate for the weirdest remark I have ever read in a serious philosopher, but no doubt if you read Lacan etc for long enough it looks deeply wise.
1. Philosophy / E. Nature of Metaphysics / 7. Against Metaphysics
Philosophy has been relieved of physics, cosmology, politics, and now must give up ontology [Badiou]
     Full Idea: Philosophy has been released from, even relieved of, physics, cosmology, and politics, as well as many other things. It is important for it to be released from ontology per se.
     From: Alain Badiou (Briefings on Existence [1998], 3)
     A reaction: A startling proposal, for anyone who thought that ontology was First Philosophy. Badiou wants to hand ontology over to mathematicians, but I am unclear what remains for the philosophers to do.
2. Reason / A. Nature of Reason / 4. Aims of Reason
Consensus is the enemy of thought [Badiou]
     Full Idea: Consensus is the enemy of thought.
     From: Alain Badiou (Briefings on Existence [1998], 2)
     A reaction: A nice slogan for bringing Enlightenment optimists to a halt. I am struck. Do I allow my own thinking to always be diverted towards something which might result in a consensus? Do I actually (horror!) prefer consensus to truth?
3. Truth / F. Semantic Truth / 2. Semantic Truth
While true-in-a-model seems relative, true-in-all-models seems not to be [Reck/Price]
     Full Idea: While truth can be defined in a relative way, as truth in one particular model, a non-relative notion of truth is implied, as truth in all models.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: [The article is actually discussing arithmetic] This idea strikes me as extremely important. True-in-all-models is usually taken to be tautological, but it does seem to give a more universal notion of truth. See semantic truth, Tarski, Davidson etc etc.
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
There is 'transivity' iff membership ∈ also means inclusion ⊆ [Badiou]
     Full Idea: 'Transitivity' signifies that all of the elements of the set are also parts of the set. If you have α∈Β, you also have α⊆Β. This correlation of membership and inclusion gives a stability which is the sets' natural being.
     From: Alain Badiou (Briefings on Existence [1998], 11)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC set theory has only 'pure' sets, without 'urelements' [Reck/Price]
     Full Idea: In standard ZFC ('Zermelo-Fraenkel with Choice') set theory we deal merely with pure sets, not with additional urelements.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: The 'urelements' would the actual objects that are members of the sets, be they physical or abstract. This idea is crucial to understanding philosophy of mathematics, and especially logicism. Must the sets exist, just as the urelements do?
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The axiom of choice must accept an indeterminate, indefinable, unconstructible set [Badiou]
     Full Idea: The axiom of choice actually amounts to admitting an absolutely indeterminate infinite set whose existence is asserted albeit remaining linguistically indefinable. On the other hand, as a process, it is unconstructible.
     From: Alain Badiou (Briefings on Existence [1998], 2)
     A reaction: If only constructible sets are admitted (see 'V = L') then there is a contradiction.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Topos theory explains the plurality of possible logics [Badiou]
     Full Idea: Topos theory explains the plurality of possible logics.
     From: Alain Badiou (Briefings on Existence [1998], 14)
     A reaction: This will because logic will have a distinct theory within each 'topos'.
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Logic is a mathematical account of a universe of relations [Badiou]
     Full Idea: Logic should first and foremost be a mathematical thought of what a universe of relations is.
     From: Alain Badiou (Briefings on Existence [1998], 14)
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Three types of variable in second-order logic, for objects, functions, and predicates/sets [Reck/Price]
     Full Idea: In second-order logic there are three kinds of variables, for objects, for functions, and for predicates or sets.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: It is interesting that a predicate seems to be the same as a set, which begs rather a lot of questions. For those who dislike second-order logic, there seems nothing instrinsically wicked in having variables ranging over innumerable multi-order types.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Numbers are for measuring and for calculating (and the two must be consistent) [Badiou]
     Full Idea: Number is an instance of measuring (distinguishing the more from the less, and calibrating data), ..and a figure for calculating (one counts with numbers), ..and it ought to be a figure of consistency (the compatibility of order and calculation).
     From: Alain Badiou (Briefings on Existence [1998], 11)
There is no single unified definition of number [Badiou]
     Full Idea: Apparently - and this is quite unlike old Greek times - there is no single unified definition of number.
     From: Alain Badiou (Briefings on Existence [1998], 11)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Each type of number has its own characteristic procedure of introduction [Badiou]
     Full Idea: There is a heterogeneity of introductory procedures of different classical number types: axiomatic for natural numbers, structural for ordinals, algebraic for negative and rational numbers, topological for reals, mainly geometric for complex numbers.
     From: Alain Badiou (Briefings on Existence [1998], 11)
Must we accept numbers as existing when they no longer consist of units? [Badiou]
     Full Idea: Do we have to confer existence on numbers whose principle is to no longer consist of units?
     From: Alain Badiou (Briefings on Existence [1998], 2)
     A reaction: This very nicely expresses what seems to me perhaps the most important question in the philosophy of mathematics. I am reluctant to accept such 'unitless' numbers, but I then feel hopelessly old-fashioned and naïve. What to do?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
'Analysis' is the theory of the real numbers [Reck/Price]
     Full Idea: 'Analysis' is the theory of the real numbers.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: 'Analysis' began with the infinitesimal calculus, which later built on the concept of 'limit'. A continuum of numbers seems to be required to make that work.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The undecidability of the Continuum Hypothesis may have ruined or fragmented set theory [Badiou]
     Full Idea: As we have known since Paul Cohen's theorem, the Continuum Hypothesis is intrinsically undecidable. Many believe Cohen's discovery has driven the set-theoretic project into ruin, or 'pluralized' what was once presented as a unified construct.
     From: Alain Badiou (Briefings on Existence [1998], 6)
     A reaction: Badiou thinks the theorem completes set theory, by (roughly) finalising its map.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Mereological arithmetic needs infinite objects, and function definitions [Reck/Price]
     Full Idea: The difficulties for a nominalistic mereological approach to arithmetic is that an infinity of physical objects are needed (space-time points? strokes?), and it must define functions, such as 'successor'.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: Many ontologically austere accounts of arithmetic are faced with the problem of infinity. The obvious non-platonist response seems to be a modal or if-then approach. To postulate infinite abstract or physical entities so that we can add 3 and 2 is mad.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Peano Arithmetic can have three second-order axioms, plus '1' and 'successor' [Reck/Price]
     Full Idea: A common formulation of Peano Arithmetic uses 2nd-order logic, the constant '1', and a one-place function 's' ('successor'). Three axioms then give '1 is not a successor', 'different numbers have different successors', and induction.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: This is 'second-order' Peano Arithmetic, though it is at least as common to formulate in first-order terms (only quantifying over objects, not over properties - as is done here in the induction axiom). I like the use of '1' as basic instead of '0'!
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory gives a unified and an explicit basis for mathematics [Reck/Price]
     Full Idea: The merits of basing an account of mathematics on set theory are that it allows for a comprehensive unified treatment of many otherwise separate branches of mathematics, and that all assumption, including existence, are explicit in the axioms.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I am forming the impression that set-theory provides one rather good model (maybe the best available) for mathematics, but that doesn't mean that mathematics is set-theory. The best map of a landscape isn't a landscape.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism emerged from abstract algebra, axioms, and set theory and its structures [Reck/Price]
     Full Idea: Structuralism has emerged from the development of abstract algebra (such as group theory), the creation of axiom systems, the introduction of set theory, and Bourbaki's encyclopaedic survey of set theoretic structures.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: In other words, mathematics has gradually risen from one level of abstraction to the next, so that mathematical entities like points and numbers receive less and less attention, with relationships becoming more prominent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Relativist Structuralism just stipulates one successful model as its arithmetic [Reck/Price]
     Full Idea: Relativist Structuralism simply picks one particular model of axiomatised arithmetic (i.e. one particular interpretation that satisfies the axioms), and then stipulates what the elements, functions and quantifiers refer to.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: The point is that a successful model can be offered, and it doesn't matter which one, like having any sort of aeroplane, as long as it flies. I don't find this approach congenial, though having a model is good. What is the essence of flight?
There are 'particular' structures, and 'universal' structures (what the former have in common) [Reck/Price]
     Full Idea: The term 'structure' has two uses in the literature, what can be called 'particular structures' (which are particular relational systems), but also what can be called 'universal structures' - what particular systems share, or what they instantiate.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §6)
     A reaction: This is a very helpful distinction, because it clarifies why (rather to my surprise) some structuralists turn out to be platonists in a new guise. Personal my interest in structuralism has been anti-platonist from the start.
Pattern Structuralism studies what isomorphic arithmetic models have in common [Reck/Price]
     Full Idea: According to 'pattern' structuralism, what we study are not the various particular isomorphic models of arithmetic, but something in addition to them: a corresponding pattern.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §7)
     A reaction: Put like that, we have to feel a temptation to wield Ockham's Razor. It's bad enough trying to give the structure of all the isomorphic models, without seeking an even more abstract account of underlying patterns. But patterns connect to minds..
There are Formalist, Relativist, Universalist and Pattern structuralism [Reck/Price]
     Full Idea: There are four main variants of structuralism in the philosophy of mathematics - formalist structuralism, relativist structuralism, universalist structuralism (with modal variants), and pattern structuralism.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §9)
     A reaction: I'm not sure where Chihara's later book fits into this, though it is at the nominalist end of the spectrum. Shapiro and Resnik do patterns (the latter more loosely); Hellman does modal universalism; Quine does the relativist version. Dedekind?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
If mathematics is a logic of the possible, then questions of existence are not intrinsic to it [Badiou]
     Full Idea: If mathematics is a logic of the possible, then questions of existence are not intrinsic to it (as they are for the Platonist).
     From: Alain Badiou (Briefings on Existence [1998], 7)
     A reaction: See also Idea 12328. I file this to connect it with Hellman's modal (and nominalist) version of structuralism. Could it be that mathematics and modal logic are identical?
Formalist Structuralism says the ontology is vacuous, or formal, or inference relations [Reck/Price]
     Full Idea: Formalist Structuralism endorses structural methodology in mathematics, but rejects semantic and metaphysical problems as either meaningless, or purely formal, or as inference relations.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §3)
     A reaction: [very compressed] I find the third option fairly congenial, certainly in preference to rather platonist accounts of structuralism. One still needs to distinguish the mathematical from the non-mathematical in the inference relations.
Maybe we should talk of an infinity of 'possible' objects, to avoid arithmetic being vacuous [Reck/Price]
     Full Idea: It is tempting to take a modal turn, and quantify over all possible objects, because if there are only a finite number of actual objects, then there are no models (of the right sort) for Peano Arithmetic, and arithmetic is vacuously true.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: [compressed; Geoffrey Hellman is the chief champion of this view] The article asks whether we are not still left with the puzzle of whether infinitely many objects are possible, instead of existent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Universalist Structuralism is based on generalised if-then claims, not one particular model [Reck/Price]
     Full Idea: Universalist Structuralism is a semantic thesis, that an arithmetical statement asserts a universal if-then statement. We build an if-then statement (using quantifiers) into the structure, and we generalise away from any one particular model.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: There remains the question of what is distinctively mathematical about the highly generalised network of inferences that is being described. Presumable the axioms capture that, but why those particular axioms? Russell is cited as an originator.
Universalist Structuralism eliminates the base element, as a variable, which is then quantified out [Reck/Price]
     Full Idea: Universalist Structuralism is eliminativist about abstract objects, in a distinctive form. Instead of treating the base element (say '1') as an ambiguous referring expression (the Relativist approach), it is a variable which is quantified out.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: I am a temperamental eliminativist on this front (and most others) so this is tempting. I am also in love with the concept of a 'variable', which I take to be utterly fundamental to all conceptual thought, even in animals, and not just a trick of algebra.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The existence of an infinite set is assumed by Relativist Structuralism [Reck/Price]
     Full Idea: Relativist Structuralism must first assume the existence of an infinite set, otherwise there would be no model to pick, and arithmetical terms would have no reference.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: See Idea 10169 for Relativist Structuralism. They point out that ZFC has an Axiom of Infinity.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Platonists like axioms and decisions, Aristotelians like definitions, possibilities and logic [Badiou]
     Full Idea: A Platonist's interest focuses on axioms in which the decision of thought is played out, where an Aristotelian or Leibnizian interest focuses on definitions laying out the representation of possibilities (...and the essence of mathematics is logic).
     From: Alain Badiou (Briefings on Existence [1998], 7)
     A reaction: See Idea 12323 for the significance of the Platonist approach. So logicism is an Aristotelian project? Frege is not a true platonist? I like the notion of 'the representation of possibilities', so will vote for the Aristotelians, against Badiou.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logic is definitional, but real mathematics is axiomatic [Badiou]
     Full Idea: Logic is definitional, whereas real mathematics is axiomatic.
     From: Alain Badiou (Briefings on Existence [1998], 10)
7. Existence / A. Nature of Existence / 3. Being / a. Nature of Being
There is no Being as a whole, because there is no set of all sets [Badiou]
     Full Idea: The fundamental theorem that 'there does not exist a set of all sets' designates the inexistence of Being as a whole. ...A crucial consequence of this property is that any ontological investigation is irremediably local.
     From: Alain Badiou (Briefings on Existence [1998], 14)
     A reaction: The second thought pushes Badiou into Topos Theory, where the real numbers (for example) have a separate theory in each 'topos'.
7. Existence / A. Nature of Existence / 3. Being / b. Being and existence
Existence is Being itself, but only as our thought decides it [Badiou]
     Full Idea: Existence is precisely Being itself in as much as thought decides it. And that decision orients thought essentially. ...It is when you decide upon what exists that you bind your thought to Being.
     From: Alain Badiou (Briefings on Existence [1998], 2)
     A reaction: [2nd half p.57] Helpful for us non-Heideggerians to see what is going on. Does this mean that Being is Kant's noumenon?
7. Existence / A. Nature of Existence / 3. Being / i. Deflating being
The modern view of Being comes when we reject numbers as merely successions of One [Badiou]
     Full Idea: The saturation and collapse of the Euclidean idea of the being of number as One's procession signs the entry of the thought of Being into modern times.
     From: Alain Badiou (Briefings on Existence [1998], 11)
     A reaction: That is, by allowing that not all numbers are built of units, numbers expand widely enough to embrace everything we think of as Being. The landmark event is the acceptance of the infinite as a number.
The primitive name of Being is the empty set; in a sense, only the empty set 'is' [Badiou]
     Full Idea: In Set Theory, the primitive name of Being is the void, the empty set. The whole hierarchy takes root in it. In a certain sense, it alone 'is'.
     From: Alain Badiou (Briefings on Existence [1998], 6)
     A reaction: This is the key to Badiou's view that ontology is mathematics. David Lewis pursued interesting enquiries in this area.
7. Existence / D. Theories of Reality / 1. Ontologies
Ontology is (and always has been) Cantorian mathematics [Badiou]
     Full Idea: Enlightened by the Cantorian grounding of mathematics, we can assert ontology to be nothing other than mathematics itself. This has been the case ever since its Greek origin.
     From: Alain Badiou (Briefings on Existence [1998], 1)
     A reaction: There seems to be quite a strong feeling among mathematicians that new 'realms of being' are emerging from their researches. Only a Platonist, of course, is likely to find this idea sympathetic.
8. Modes of Existence / E. Nominalism / 6. Mereological Nominalism
A nominalist might avoid abstract objects by just appealing to mereological sums [Reck/Price]
     Full Idea: One way for a nominalist to reject appeal to all abstract objects, including sets, is to only appeal to nominalistically acceptable objects, including mereological sums.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I'm suddenly thinking that this looks very interesting and might be the way to go. The issue seems to be whether mereological sums should be seen as constrained by nature, or whether they are unrestricted. See Mereology in Ontology...|Intrinsic Identity.
19. Language / F. Communication / 3. Denial
We must either assert or deny any single predicate of any single subject [Badiou]
     Full Idea: There can be nothing intermediate to an assertion and a denial. We must either assert or deny any single predicate of any single subject.
     From: Alain Badiou (Briefings on Existence [1998], 1011b24)
     A reaction: The first sentence seems to be bivalence, and the second sentence excluded middle.
25. Social Practice / E. Policies / 2. Religion in Society
For Enlightenment philosophers, God was no longer involved in politics [Badiou]
     Full Idea: For the philosophers of the Enlightenment politics is strictly the affair of humankind, an immanent practice from which recourse to the All Mighty's providential organization had to be discarded.
     From: Alain Badiou (Briefings on Existence [1998], Prol)
25. Social Practice / E. Policies / 5. Education / b. Education principles
Learned men gain more in one day than others do in a lifetime [Posidonius]
     Full Idea: In a single day there lies open to men of learning more than there ever does to the unenlightened in the longest of lifetimes.
     From: Posidonius (fragments/reports [c.95 BCE]), quoted by Seneca the Younger - Letters from a Stoic 078
     A reaction: These remarks endorsing the infinite superiority of the educated to the uneducated seem to have been popular in late antiquity. It tends to be the religions which discourage great learning, especially in their emphasis on a single book.
27. Natural Reality / D. Time / 1. Nature of Time / d. Time as measure
Time is an interval of motion, or the measure of speed [Posidonius, by Stobaeus]
     Full Idea: Posidonius defined time thus: it is an interval of motion, or the measure of speed and slowness.
     From: report of Posidonius (fragments/reports [c.95 BCE]) by John Stobaeus - Anthology 1.08.42
     A reaction: Hm. Can we define motion or speed without alluding to time? Looks like we have to define them as a conjoined pair, which means we cannot fully understand either of them.
29. Religion / D. Religious Issues / 1. Religious Commitment / a. Religious Belief
The God of religion results from an encounter, not from a proof [Badiou]
     Full Idea: The God of metaphysics makes sense of existing according to a proof, while the God of religion makes sense of living according to an encounter
     From: Alain Badiou (Briefings on Existence [1998], Prol)