Combining Texts

All the ideas for 'fragments/reports', 'Knowledge and the Philosophy of Number' and 'Regressive Method for Premises in Mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


22 ideas

1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / e. Philosophy as reason
Discoveries in mathematics can challenge philosophy, and offer it a new foundation [Russell]
     Full Idea: Any new discovery as to mathematical method and principles is likely to upset a great deal of otherwise plausible philosophising, as well as to suggest a new philosophy which will be solid in proportion as its foundations in mathematics are securely laid.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.283)
     A reaction: This is a manifesto for modern analytic philosophy. I'm not convinced, especially if a fictionalist view of maths is plausible. What Russell wants is rigour, but there are other ways of getting that. Currently I favour artificial intelligence.
2. Reason / A. Nature of Reason / 6. Coherence
If one proposition is deduced from another, they are more certain together than alone [Russell]
     Full Idea: Two obvious propositions of which one can be deduced from the other both become more certain than either in isolation; thus in a complicated deductive system, many parts of which are obvious, the total probability may become all but absolute certainty.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.279)
     A reaction: Thagard picked this remark out, in support of his work on coherence.
2. Reason / B. Laws of Thought / 3. Non-Contradiction
Non-contradiction was learned from instances, and then found to be indubitable [Russell]
     Full Idea: The law of contradiction must have been originally discovered by generalising from instances, though, once discovered, it was found to be quite as indubitable as the instances.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.274)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Predicativism says only predicated sets exist [Hossack]
     Full Idea: Predicativists doubt the existence of sets with no predicative definition.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 02.3)
     A reaction: This would imply that sets which encounter paradoxes when they try to be predicative do not therefore exist. Surely you can have a set of random objects which don't fall under a single predicate?
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception has to appropriate Replacement, to justify the ordinals [Hossack]
     Full Idea: The iterative conception justifies Power Set, but cannot justify a satisfactory theory of von Neumann ordinals, so ZFC appropriates Replacement from NBG set theory.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 09.9)
     A reaction: The modern approach to axioms, where we want to prove something so we just add an axiom that does the job.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size justifies Replacement, but then has to appropriate Power Set [Hossack]
     Full Idea: The limitation of size conception of sets justifies the axiom of Replacement, but cannot justify Power Set, so NBG set theory appropriates the Power Set axiom from ZFC.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 09.9)
     A reaction: Which suggests that the Power Set axiom is not as indispensable as it at first appears to be.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / d. and
The connective 'and' can have an order-sensitive meaning, as 'and then' [Hossack]
     Full Idea: The sentence connective 'and' also has an order-sensitive meaning, when it means something like 'and then'.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 10.4)
     A reaction: This is support the idea that orders are a feature of reality, just as much as possible concatenation. Relational predicates, he says, refer to series rather than to individuals. Nice point.
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
'Before' and 'after' are not two relations, but one relation with two orders [Hossack]
     Full Idea: The reason the two predicates 'before' and 'after' are needed is not to express different relations, but to indicate its order. Since there can be difference of order without difference of relation, the nature of relations is not the source of order.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 10.3)
     A reaction: This point is to refute Russell's 1903 claim that order arises from the nature of relations. Hossack claims that it is ordered series which are basic. I'm inclined to agree with him.
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Which premises are ultimate varies with context [Russell]
     Full Idea: Premises which are ultimate in one investigation may cease to be so in another.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.273)
The sources of a proof are the reasons why we believe its conclusion [Russell]
     Full Idea: In mathematics, except in the earliest parts, the propositions from which a given proposition is deduced generally give the reason why we believe the given proposition.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.273)
Finding the axioms may be the only route to some new results [Russell]
     Full Idea: The premises [of a science] ...are pretty certain to lead to a number of new results which could not otherwise have been known.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.282)
     A reaction: I identify this as the 'fruitfulness' that results when the essence of something is discovered.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Transfinite ordinals are needed in proof theory, and for recursive functions and computability [Hossack]
     Full Idea: The transfinite ordinal numbers are important in the theory of proofs, and essential in the theory of recursive functions and computability. Mathematics would be incomplete without them.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 10.1)
     A reaction: Hossack offers this as proof that the numbers are not human conceptual creations, but must exist beyond the range of our intellects. Hm.
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
It seems absurd to prove 2+2=4, where the conclusion is more certain than premises [Russell]
     Full Idea: It is an apparent absurdity in proceeding ...through many rather recondite propositions of symbolic logic, to the 'proof' of such truisms as 2+2=4: for it is plain that the conclusion is more certain than the premises, and the supposed proof seems futile.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.272)
     A reaction: Famously, 'Principia Mathematica' proved this fact at enormous length. I wonder if this thought led Moore to his common sense view of his own hand - the conclusion being better than the sceptical arguments?
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Numbers are properties, not sets (because numbers are magnitudes) [Hossack]
     Full Idea: I propose that numbers are properties, not sets. Magnitudes are a kind of property, and numbers are magnitudes. …Natural numbers are properties of pluralities, positive reals of continua, and ordinals of series.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], Intro)
     A reaction: Interesting! Since time can have a magnitude (three weeks) just as liquids can (three litres), it is not clear that there is a single natural property we can label 'magnitude'. Anything we can manage to measure has a magnitude.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
We can only mentally construct potential infinities, but maths needs actual infinities [Hossack]
     Full Idea: Numbers cannot be mental objects constructed by our own minds: there exists at most a potential infinity of mental constructions, whereas the axioms of mathematics require an actual infinity of numbers.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], Intro 2)
     A reaction: Doubt this, but don't know enough to refute it. Actual infinities were a fairly late addition to maths, I think. I would think treating fictional complete infinities as real would be sufficient for the job. Like journeys which include imagined roads.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Arithmetic was probably inferred from relationships between physical objects [Russell]
     Full Idea: When 2 + 2 =4 was first discovered, it was probably inferred from the case of sheep and other concrete cases.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.272)
11. Knowledge Aims / B. Certain Knowledge / 3. Fallibilism
The most obvious beliefs are not infallible, as other obvious beliefs may conflict [Russell]
     Full Idea: Even where there is the highest degree of obviousness, we cannot assume that we are infallible - a sufficient conflict with other obvious propositions may lead us to abandon our belief, as in the case of a hallucination afterwards recognised as such.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.279)
     A reaction: This approach to fallibilism seems to arise from the paradox that undermined Frege's rather obvious looking axioms. After Peirce and Russell, fallibilism has become a secure norm of modern thought.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / a. Coherence as justification
Believing a whole science is more than believing each of its propositions [Russell]
     Full Idea: Although intrinsic obviousness is the basis of every science, it is never, in a fairly advanced science, the whole of our reason for believing any one proposition of the science.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.279)
14. Science / C. Induction / 2. Aims of Induction
Induction is inferring premises from consequences [Russell]
     Full Idea: The inferring of premises from consequences is the essence of induction.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.274)
     A reaction: So induction is just deduction in reverse? Induction is transcendental deduction? Do I deduce the premises from observing a lot of white swans? Hm.
25. Social Practice / E. Policies / 5. Education / b. Education principles
Learned men gain more in one day than others do in a lifetime [Posidonius]
     Full Idea: In a single day there lies open to men of learning more than there ever does to the unenlightened in the longest of lifetimes.
     From: Posidonius (fragments/reports [c.95 BCE]), quoted by Seneca the Younger - Letters from a Stoic 078
     A reaction: These remarks endorsing the infinite superiority of the educated to the uneducated seem to have been popular in late antiquity. It tends to be the religions which discourage great learning, especially in their emphasis on a single book.
26. Natural Theory / D. Laws of Nature / 1. Laws of Nature
The law of gravity has many consequences beyond its grounding observations [Russell]
     Full Idea: The law of gravitation leads to many consequences which could not be discovered merely from the apparent motions of the heavenly bodies.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.275)
27. Natural Reality / D. Time / 1. Nature of Time / d. Time as measure
Time is an interval of motion, or the measure of speed [Posidonius, by Stobaeus]
     Full Idea: Posidonius defined time thus: it is an interval of motion, or the measure of speed and slowness.
     From: report of Posidonius (fragments/reports [c.95 BCE]) by John Stobaeus - Anthology 1.08.42
     A reaction: Hm. Can we define motion or speed without alluding to time? Looks like we have to define them as a conjoined pair, which means we cannot fully understand either of them.