Combining Texts

All the ideas for 'fragments/reports', 'What are Sets and What are they For?' and 'Event Causation: counterfactual analysis'

unexpand these ideas     |    start again     |     specify just one area for these texts


19 ideas

4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The empty set is usually derived from Separation, but it also seems to need Infinity [Oliver/Smiley]
     Full Idea: The empty set is usually derived via Zermelo's axiom of separation. But the axiom of separation is conditional: it requires the existence of a set in order to generate others as subsets of it. The original set has to come from the axiom of infinity.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
     A reaction: They charge that this leads to circularity, as Infinity depends on the empty set.
The empty set is something, not nothing! [Oliver/Smiley]
     Full Idea: Some authors need to be told loud and clear: if there is an empty set, it is something, not nothing.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
     A reaction: I'm inclined to think of a null set as a pair of brackets, so maybe that puts it into a metalanguage.
We don't need the empty set to express non-existence, as there are other ways to do that [Oliver/Smiley]
     Full Idea: The empty set is said to be useful to express non-existence, but saying 'there are no Us', or ¬∃xUx are no less concise, and certainly less roundabout.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
Maybe we can treat the empty set symbol as just meaning an empty term [Oliver/Smiley]
     Full Idea: Suppose we introduce Ω not as a term standing for a supposed empty set, but as a paradigm of an empty term, not standing for anything.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
     A reaction: This proposal, which they go on to explore, seems to mean that Ω (i.e. the traditional empty set symbol) is no longer part of set theory but is part of semantics.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
The unit set may be needed to express intersections that leave a single member [Oliver/Smiley]
     Full Idea: Thomason says with no unit sets we couldn't call {1,2}∩{2,3} a set - but so what? Why shouldn't the intersection be the number 2? However, we then have to distinguish three different cases of intersection (common subset or member, or disjoint).
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 2.2)
5. Theory of Logic / G. Quantification / 6. Plural Quantification
If you only refer to objects one at a time, you need sets in order to refer to a plurality [Oliver/Smiley]
     Full Idea: A 'singularist', who refers to objects one at a time, must resort to the language of sets in order to replace plural reference to members ('Henry VIII's wives') by singular reference to a set ('the set of Henry VIII's wives').
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], Intro)
     A reaction: A simple and illuminating point about the motivation for plural reference. Null sets and singletons give me the creeps, so I would personally prefer to avoid set theory when dealing with ontology.
We can use plural language to refer to the set theory domain, to avoid calling it a 'set' [Oliver/Smiley]
     Full Idea: Plurals earn their keep in set theory, to answer Skolem's remark that 'in order to treat of 'sets', we must begin with 'domains' that are constituted in a certain way'. We can speak in the plural of 'the objects', not a 'domain' of objects.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], Intro)
     A reaction: [Skolem 1922:291 in van Heijenoort] Zermelo has said that the domain cannot be a set, because every set belongs to it.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logical truths are true no matter what exists - but predicate calculus insists that something exists [Oliver/Smiley]
     Full Idea: Logical truths should be true no matter what exists, so true even if nothing exists. The classical predicate calculus, however, makes it logically true that something exists.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 5.1)
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
If mathematics purely concerned mathematical objects, there would be no applied mathematics [Oliver/Smiley]
     Full Idea: If mathematics was purely concerned with mathematical objects, there would be no room for applied mathematics.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 5.1)
     A reaction: Love it! Of course, they are using 'objects' in the rather Fregean sense of genuine abstract entities. I don't see why fictionalism shouldn't allow maths to be wholly 'pure', although we have invented fictions which actually have application.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Sets might either represent the numbers, or be the numbers, or replace the numbers [Oliver/Smiley]
     Full Idea: Identifying numbers with sets may mean one of three quite different things: 1) the sets represent the numbers, or ii) they are the numbers, or iii) they replace the numbers.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 5.2)
     A reaction: Option one sounds the most plausible to me. I will take numbers to be patterns embedded in nature, and sets are one way of presenting them in shorthand form, in order to bring out what is repeated.
7. Existence / B. Change in Existence / 4. Events / a. Nature of events
Maybe each event has only one possible causal history [Bennett]
     Full Idea: Perhaps it is impossible that an event should have had a causal history different from the one that it actually had.
     From: Jonathan Bennett (Event Causation: counterfactual analysis [1987], p.220)
     A reaction: [He cites van Inwagen for this] The idea is analagous to baptismal accounts of reference. Individuate an event by its history. It might depend (as Davidson implies) on how you describe the event.
Maybe an event's time of occurrence is essential to it [Bennett]
     Full Idea: It has been argued that an event's time of occurrence is essential to it.
     From: Jonathan Bennett (Event Causation: counterfactual analysis [1987], p.221)
     A reaction: [He cites Lawrence Lombard] This sound initially implausible, particularly if a rival event happened, say, .1 of a second later than the actual event. It might depend on one's view about determinism. Interesting.
25. Social Practice / E. Policies / 5. Education / b. Education principles
Learned men gain more in one day than others do in a lifetime [Posidonius]
     Full Idea: In a single day there lies open to men of learning more than there ever does to the unenlightened in the longest of lifetimes.
     From: Posidonius (fragments/reports [c.95 BCE]), quoted by Seneca the Younger - Letters from a Stoic 078
     A reaction: These remarks endorsing the infinite superiority of the educated to the uneducated seem to have been popular in late antiquity. It tends to be the religions which discourage great learning, especially in their emphasis on a single book.
26. Natural Theory / C. Causation / 1. Causation
Delaying a fire doesn't cause it, but hastening it might [Bennett]
     Full Idea: Although you cannot cause a fire by delaying something's burning, you can cause a fire by hastening something's burning.
     From: Jonathan Bennett (Event Causation: counterfactual analysis [1987], p.223)
     A reaction: A very nice observation which brings out all sorts of problems about identifying causes. Bennett is criticising the counterfactual account. It is part of the problem of pre-emption, where causes are queueing up to produce a given effect.
Either cause and effect are subsumed under a conditional because of properties, or it is counterfactual [Bennett]
     Full Idea: We must choose between subsumption and counterfactual analyses of causal statements. The former means that cause and effect have some properties that enables them to be subsumed under a conditional. The latter is just 'if no-c then no-e'.
     From: Jonathan Bennett (Event Causation: counterfactual analysis [1987], p.217)
     A reaction: I have an immediate preference for the former account, which seems to potentially connect it with physics and features of the world which make one thing lead to another. The counterfactual account seems very thin, and is more like mere semantics.
26. Natural Theory / C. Causation / 2. Types of cause
Causes are between events ('the explosion') or between facts/states of affairs ('a bomb dropped') [Bennett]
     Full Idea: Theories of causation are split between event and fact/state of affairs theories. The first have the form 'the explosion caused the fire' (perfect nominals) and the second have the form 'the fire started because a bomb dropped' (sentential clauses).
     From: Jonathan Bennett (Event Causation: counterfactual analysis [1987])
     A reaction: Surely events must have priority? The form which uses facts is drifting off into explanation, and is much more likely to involve subjective human elements and interpretations. Events are closer to the physics, and the mechanics of what happens.
26. Natural Theory / C. Causation / 9. General Causation / c. Counterfactual causation
The full counterfactual story asserts a series of events, because counterfactuals are not transitive [Bennett]
     Full Idea: The refinement of a simple counterfactual analysis is to say that cause and effect depend on a series of events. This must be asserted because counterfactual conditionals are well known not to be transitive.
     From: Jonathan Bennett (Event Causation: counterfactual analysis [1987])
     A reaction: This fills out the theory, but offers another target for critics. If the glue that binds the series is not in the counterfactuals, is it just in the mind of the speaker? How do you decide what's in the series? Cf. deciding offside in football (soccer!).
A counterfactual about an event implies something about the event's essence [Bennett]
     Full Idea: Any counterfactual about a particular event implies or presupposes something about the event's essence.
     From: Jonathan Bennett (Event Causation: counterfactual analysis [1987], p.219)
     A reaction: This is where the counterfactual theory suddenly becomes more interesting, instead of just being a rather bare account of the logical structure of causation. (Bennett offers some discussion of possible essential implications).
27. Natural Reality / D. Time / 1. Nature of Time / d. Time as measure
Time is an interval of motion, or the measure of speed [Posidonius, by Stobaeus]
     Full Idea: Posidonius defined time thus: it is an interval of motion, or the measure of speed and slowness.
     From: report of Posidonius (fragments/reports [c.95 BCE]) by John Stobaeus - Anthology 1.08.42
     A reaction: Hm. Can we define motion or speed without alluding to time? Looks like we have to define them as a conjoined pair, which means we cannot fully understand either of them.