Combining Texts

All the ideas for 'fragments/reports', 'Defending the Axioms' and 'Modal Logics and Philosophy'

unexpand these ideas     |    start again     |     specify just one area for these texts


24 ideas

4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Propositional logic handles negation, disjunction, conjunction; predicate logic adds quantifiers, predicates, relations [Girle]
     Full Idea: Propositional logic can deal with negation, disjunction and conjunction of propositions, but predicate logic goes beyond it to deal with quantifiers, predicates and relations.
     From: Rod Girle (Modal Logics and Philosophy [2000], 1.1)
     A reaction: This is on the first page of an introduction to the next stage, which is to include modal notions like 'must' and 'possibly'.
There are three axiom schemas for propositional logic [Girle]
     Full Idea: The axioms of propositional logic are: A→(B→A); A→(B→C)→(A→B)→(A→C) ; and (¬A→¬B)→(B→A).
     From: Rod Girle (Modal Logics and Philosophy [2000], 6.5)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / a. Symbols of PL
Proposition logic has definitions for its three operators: or, and, and identical [Girle]
     Full Idea: The operators of propositional logic are defined as follows: 'or' (v) is not-A implies B; 'and' (ampersand) is not A-implies-not-B; and 'identity' (three line equals) is A-implies-B and B-implies-A.
     From: Rod Girle (Modal Logics and Philosophy [2000], 6.5)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
Axiom systems of logic contain axioms, inference rules, and definitions of proof and theorems [Girle]
     Full Idea: An axiom system for a logic contains three elements: a set of axioms; a set of inference rules; and definitions for proofs and theorems. There are also definitions for the derivation of conclusions from sets of premises.
     From: Rod Girle (Modal Logics and Philosophy [2000], 6.5)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
There are seven modalities in S4, each with its negation [Girle]
     Full Idea: In S4 there are fourteen modalities: no-operator; necessarily; possibly; necessarily-possibly; possibly-necessarily; necessarily-possibly-necessarily; and possibly-necessarily-possibly (each with its negation).
     From: Rod Girle (Modal Logics and Philosophy [2000], 3.5)
     A reaction: This is said to be 'more complex' than S5, but also 'weaker'.
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
◊p → □◊p is the hallmark of S5 [Girle]
     Full Idea: The critical formula that distinguishes S5 from all others is: ◊p → □◊p.
     From: Rod Girle (Modal Logics and Philosophy [2000], 3.3)
     A reaction: If it is possible that it is raining, then it is necessary that it is possible that it is raining. But if it is possible in this world, how can that possibility be necessary in all possible worlds?
S5 has just six modalities, and all strings can be reduced to those [Girle]
     Full Idea: In S5 there are six modalities: no-operator; necessarily; and possibly (and their negations). In any sequence of operators we may delete all but the last to gain an equivalent formula.
     From: Rod Girle (Modal Logics and Philosophy [2000], 3.5)
     A reaction: Such drastic simplification seems attractive. Is there really no difference, though, between 'necessarily-possibly', 'possibly-possibly' and just 'possibly'? Could p be contingently possible in this world, and necessarily possible in another?
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
Possible worlds logics use true-in-a-world rather than true [Girle]
     Full Idea: In possible worlds logics a statement is true-in-a-world rather than just true.
     From: Rod Girle (Modal Logics and Philosophy [2000], 1.1)
     A reaction: This sounds relativist, but I don't think it is. It is the facts which change, not the concept of truth. So 'donkeys can talk' may be true in a world, but not in the actual one.
Modal logic has four basic modal negation equivalences [Girle]
     Full Idea: The four important logical equivalences in modal logic (the Modal Negation equivalences) are: ¬◊p↔□¬p, ◊¬p↔¬□p, □p↔¬◊¬p, and ◊p↔¬□¬p.
     From: Rod Girle (Modal Logics and Philosophy [2000], 1.2)
     A reaction: [Possibly is written as a diamond, necessarily a square] These are parallel to a set of equivalences between quantifiers in predicate logic. They are called the four 'modal negation (MN) equivalences'.
Modal logics were studied in terms of axioms, but now possible worlds semantics is added [Girle]
     Full Idea: Modal logics were, for a long time, studied in terms of axiom systems. The advent of possible worlds semantics made it possible to study them in a semantic way as well.
     From: Rod Girle (Modal Logics and Philosophy [2000], 6.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice paradoxically allows decomposing a sphere into two identical spheres [Maddy]
     Full Idea: One feature of the Axiom of Choice that troubled many mathematicians was the so-called Banach-Tarski paradox: using the Axiom, a sphere can be decomposed into finitely many parts and those parts reassembled into two spheres the same size as the original.
     From: Penelope Maddy (Defending the Axioms [2011], 1.3)
     A reaction: (The key is that the parts are non-measurable). To an outsider it is puzzling that the Axiom has been universally accepted, even though it produces such a result. Someone can explain that, I'm sure.
5. Theory of Logic / B. Logical Consequence / 7. Strict Implication
Necessary implication is called 'strict implication'; if successful, it is called 'entailment' [Girle]
     Full Idea: Necessary implication is often called 'strict implication'. The sort of strict implication found in valid arguments, where the conjunction of the premises necessarily implies the conclusion, is often called 'entailment'.
     From: Rod Girle (Modal Logics and Philosophy [2000], 1.2)
     A reaction: These are basic concept for all logic.
5. Theory of Logic / C. Ontology of Logic / 3. If-Thenism
Critics of if-thenism say that not all starting points, even consistent ones, are worth studying [Maddy]
     Full Idea: If-thenism denies that mathematics is in the business of discovering truths about abstracta. ...[their opponents] obviously don't regard any starting point, even a consistent one, as equally worthy of investigation.
     From: Penelope Maddy (Defending the Axioms [2011], 3.3)
     A reaction: I have some sympathy with if-thenism, in that you can obviously study the implications of any 'if' you like, but deep down I agree with the critics.
5. Theory of Logic / H. Proof Systems / 5. Tableau Proof
If an argument is invalid, a truth tree will indicate a counter-example [Girle]
     Full Idea: The truth trees method for establishing the validity of arguments and formulas is easy to use, and has the advantage that if an argument or formula is not valid, then a counter-example can be retrieved from the tree.
     From: Rod Girle (Modal Logics and Philosophy [2000], 1.4)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Hilbert's geometry and Dedekind's real numbers were role models for axiomatization [Maddy]
     Full Idea: At the end of the nineteenth century there was a renewed emphasis on rigor, the central tool of which was axiomatization, along the lines of Hilbert's axioms for geometry and Dedekind's axioms for real numbers.
     From: Penelope Maddy (Defending the Axioms [2011], 1.3)
If two mathematical themes coincide, that suggest a single deep truth [Maddy]
     Full Idea: The fact that two apparently fruitful mathematical themes turn out to coincide makes it all the more likely that they're tracking a genuine strain of mathematical depth.
     From: Penelope Maddy (Defending the Axioms [2011], 5.3ii)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
Every infinite set of reals is either countable or of the same size as the full set of reals [Maddy]
     Full Idea: One form of the Continuum Hypothesis is the claim that every infinite set of reals is either countable or of the same size as the full set of reals.
     From: Penelope Maddy (Defending the Axioms [2011], 2.4 n40)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory tracks the contours of mathematical depth and fruitfulness [Maddy]
     Full Idea: Our set-theoretic methods track the underlying contours of mathematical depth. ...What sets are, most fundamentally, is markers for these contours ...they are maximally effective trackers of certain trains of mathematical fruitfulness.
     From: Penelope Maddy (Defending the Axioms [2011], 3.4)
     A reaction: This seems to make it more like a map of mathematics than the actual essence of mathematics.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
The connection of arithmetic to perception has been idealised away in modern infinitary mathematics [Maddy]
     Full Idea: Ordinary perceptual cognition is most likely involved in our grasp of elementary arithmetic, but ...this connection to the physical world has long since been idealized away in the infinitary structures of contemporary pure mathematics.
     From: Penelope Maddy (Defending the Axioms [2011], 2.3)
     A reaction: Despite this, Maddy's quest is for a 'naturalistic' account of mathematics. She ends up defending 'objectivity' (and invoking Tyler Burge), rather than even modest realism. You can't 'idealise away' the counting of objects. I blame Cantor.
10. Modality / A. Necessity / 3. Types of Necessity
Analytic truths are divided into logically and conceptually necessary [Girle]
     Full Idea: It has been customary to see analytic truths as dividing into the logically necessary and the conceptually necessary.
     From: Rod Girle (Modal Logics and Philosophy [2000], 7.3)
     A reaction: I suspect that this neglected distinction is important in discussions of Quine's elimination of the analytic/synthetic distinction. Was Quine too influenced by what is logically necessary, which might shift with a change of axioms?
10. Modality / B. Possibility / 1. Possibility
Possibilities can be logical, theoretical, physical, economic or human [Girle]
     Full Idea: Qualified modalities seem to form a hierarchy, if we say that 'the possibility that there might be no hunger' is possible logically, theoretically, physically, economically, and humanly.
     From: Rod Girle (Modal Logics and Philosophy [2000], 7.3)
     A reaction: Girle also mentions conceptual possibility. I take 'physically' to be the same as 'naturally'. I would take 'metaphysically' possible to equate to 'theoretically' rather than 'logically'. Almost anything might be logically possible, with bizarre logic.
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
A world has 'access' to a world it generates, which is important in possible worlds semantics [Girle]
     Full Idea: When one world generates another then it has 'access' to the world it generated. The accessibility relation between worlds is very important in possible worlds semantics.
     From: Rod Girle (Modal Logics and Philosophy [2000], 3.2)
     A reaction: This invites the obvious question what is meant by 'generates'.
25. Social Practice / E. Policies / 5. Education / b. Education principles
Learned men gain more in one day than others do in a lifetime [Posidonius]
     Full Idea: In a single day there lies open to men of learning more than there ever does to the unenlightened in the longest of lifetimes.
     From: Posidonius (fragments/reports [c.95 BCE]), quoted by Seneca the Younger - Letters from a Stoic 078
     A reaction: These remarks endorsing the infinite superiority of the educated to the uneducated seem to have been popular in late antiquity. It tends to be the religions which discourage great learning, especially in their emphasis on a single book.
27. Natural Reality / D. Time / 1. Nature of Time / d. Time as measure
Time is an interval of motion, or the measure of speed [Posidonius, by Stobaeus]
     Full Idea: Posidonius defined time thus: it is an interval of motion, or the measure of speed and slowness.
     From: report of Posidonius (fragments/reports [c.95 BCE]) by John Stobaeus - Anthology 1.08.42
     A reaction: Hm. Can we define motion or speed without alluding to time? Looks like we have to define them as a conjoined pair, which means we cannot fully understand either of them.