Combining Texts

All the ideas for 'fragments/reports', 'The Nature of Mathematical Knowledge' and 'Begriffsschrift'

unexpand these ideas     |    start again     |     specify just one area for these texts


54 ideas

1. Philosophy / F. Analytic Philosophy / 6. Logical Analysis
Frege changed philosophy by extending logic's ability to check the grounds of thinking [Potter on Frege]
     Full Idea: Frege's 1879 logic transformed philosophy because it greatly expanded logic's reach - what thought can achieve unaided - and hence compelled a re-examination of everything previously said about the grounds of thought when logic gives out.
     From: comment on Gottlob Frege (Begriffsschrift [1879]) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 Intro
     A reaction: I loved the gloss on logic as 'what thought can achieve unaided'. I largely see logic in terms of what is mechanically computable.
2. Reason / B. Laws of Thought / 1. Laws of Thought
We should not describe human laws of thought, but how to correctly track truth [Frege, by Fisher]
     Full Idea: Frege disagree that logic should merely describe the laws of thought - how people actually did reason. Logic is essentially normative, not descriptive. We want the one logic which successfully tracks the truth.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Jennifer Fisher - On the Philosophy of Logic 1.III
     A reaction: This explains Frege's sustained attack on psychologism, and it also explains we he ended up as a platonist about logic - because he wanted its laws to be valid independently of human thinking. A step too far, perhaps. Brains are truth machines.
4. Formal Logic / C. Predicate Calculus PC / 1. Predicate Calculus PC
I don't use 'subject' and 'predicate' in my way of representing a judgement [Frege]
     Full Idea: A distinction of subject and predicate finds no place in my way of representing a judgement.
     From: Gottlob Frege (Begriffsschrift [1879], §03)
     A reaction: Perhaps this sentence could be taken as the beginning of modern analytical philosophy. The old view doesn't seem to me entirely redundant - merely replaced by a much more detailed analysis of what makes a 'subject' and what makes a 'predicate'.
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / d. Universal quantifier ∀
For Frege, 'All A's are B's' means that the concept A implies the concept B [Frege, by Walicki]
     Full Idea: 'All A's are B's' meant for Frege that the concept A implies the concept B, or that to be A implies also to be B. Moreover this applies to arbitrary x which happens to be A.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Michal Walicki - Introduction to Mathematical Logic History D.2
     A reaction: This seems to hit the renate/cordate problem. If all creatures with hearts also have kidneys, does that mean that being enhearted logically implies being kidneyfied? If all chimps are hairy, is that a logical requirement? Is inclusion implication?
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Intuitionists rely on assertability instead of truth, but assertability relies on truth [Kitcher]
     Full Idea: Though it may appear that the intuitionist is providing an account of the connectives couched in terms of assertability conditions, the notion of assertability is a derivative one, ultimately cashed out by appealing to the concept of truth.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.5)
     A reaction: I have quite a strong conviction that Kitcher is right. All attempts to eliminate truth, as some sort of ideal at the heart of ordinary talk and of reasoning, seems to me to be doomed.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Frege has a judgement stroke (vertical, asserting or judging) and a content stroke (horizontal, expressing) [Frege, by Weiner]
     Full Idea: Frege distinguished between asserting a proposition and expressing it, and he introduced the judgement stroke (a small vertical line, assertion) and the content stroke (a long horizontal line, expression) to represent them.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Joan Weiner - Frege Ch.3
     A reaction: There are also strokes for conditional and denial.
The laws of logic are boundless, so we want the few whose power contains the others [Frege]
     Full Idea: Since in view of the boundless multitude of laws that can be enunciated we cannot list them all, we cannot achieve completeness except by searching out those that, by their power, contain all of them.
     From: Gottlob Frege (Begriffsschrift [1879], §13)
     A reaction: He refers to these laws in the previous sentence as the 'core'. His talk of 'power' is music to my ears, since it implies a direction of explanation. Burge says the power is that of defining other concepts.
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
In 1879 Frege developed second order logic [Frege, by Putnam]
     Full Idea: By 1879 Frege had discovered an algorithm, a mechanical proof procedure, that embraces what is today standard 'second order logic'.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Hilary Putnam - Reason, Truth and History Ch.5
     A reaction: Note that Frege did more than introduce quantifiers, and the logic of predicates.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Frege replaced Aristotle's subject/predicate form with function/argument form [Frege, by Weiner]
     Full Idea: Frege's regimentation is based on the view of the simplest sort of statement as having, not subject/predicate form (as in Aristotle), but function/argument form.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Joan Weiner - Frege
     A reaction: This looks like being a crucial move into the modern world, where one piece of information is taken in and dealt with, as in computer procedures. Have educated people reorganised their minds along Fregean lines?
5. Theory of Logic / G. Quantification / 1. Quantification
A quantifier is a second-level predicate (which explains how it contributes to truth-conditions) [Frege, by George/Velleman]
     Full Idea: The contribution of the quantifier to the truth conditions of sentences of which it is a part cannot be adequately explained if it is treated as other than a second-level predicate (for instance, if it is viewed as name).
     From: report of Gottlob Frege (Begriffsschrift [1879]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.2
     A reaction: They suggest that this makes it something like a 'property of properties'. With this account it becomes plausible to think of numbers as quantifiers (since they do, after all, specify quantities).
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
For Frege the variable ranges over all objects [Frege, by Tait]
     Full Idea: For Frege the variable ranges over all objects.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by William W. Tait - Frege versus Cantor and Dedekind XII
     A reaction: The point is that Frege had not yet seen the necessity to define the domain of quantification, and this leads him into various difficulties.
Frege's domain for variables is all objects, but modern interpretations first fix the domain [Dummett on Frege]
     Full Idea: For Frege there is no need to specify the domain of the individual variables, which is taken as the totality of all objects. This contrasts with the standard notion of an interpretation, which demands that we first fix the domain.
     From: comment on Gottlob Frege (Begriffsschrift [1879]) by Michael Dummett - Frege Philosophy of Language (2nd ed) Ch.14
     A reaction: What intrigues me is how domains of quantification shift according to context in ordinary usage, even in mid-sentence. I ought to go through every idea in this database, specifying its domain of quantification. Any volunteers?
5. Theory of Logic / G. Quantification / 3. Objectual Quantification
Frege reduced most quantifiers to 'everything' combined with 'not' [Frege, by McCullogh]
     Full Idea: Frege treated 'everything' as basic, and suggested ways of recasting propositions containing other quantifiers so that this was the only one remaining. He recast 'something' as 'at least one thing', and defined this in terms of 'everything' and 'not'.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Gregory McCullogh - The Game of the Name 1.6
     A reaction: Extreme parsimony seems highly desirable in logic as well as ontology, but it can lead to frustrations, especially over the crucial question of the existence of things quantified over. See Idea 6068.
Frege introduced quantifiers for generality [Frege, by Weiner]
     Full Idea: In order to express generality, Frege introduced quantifier notation.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Joan Weiner - Frege
     A reaction: This is the birth of predicate logic, beloved of analytical philosophers (but of no apparent interest to phenomenalists, deconstructionists, existentialists?). Generality is what you get from induction (which is, of course, problematic).
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
Proof theory began with Frege's definition of derivability [Frege, by Prawitz]
     Full Idea: Frege's formal definition of derivability is perhaps the first investigation in general proof theory.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Dag Prawitz - Gentzen's Analysis of First-Order Proofs 2 n2
     A reaction: In 'On General Proof Theory §1' Prawitz says "proof theory originated with Hilbert" in 1900. Presumably Frege offered a theory, and then Hilbert saw it as a general project.
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Frege produced axioms for logic, though that does not now seem the natural basis for logic [Frege, by Kaplan]
     Full Idea: Frege's work supplied a set of axioms for logic itself, at least partly because it was a well-known way of presenting the foundations in other disciplines, especially mathematics, but it does not nowadays strike us as natural for logic.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by David Kaplan - Dthat 5.1
     A reaction: What Bostock has in mind is the so-called 'natural' deduction systems, which base logic on rules of entailment, rather than on a set of truths. The axiomatic approach uses a set of truths, plus the idea of possible contradictions.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Kitcher says maths is an idealisation of the world, and our operations in dealing with it [Kitcher, by Resnik]
     Full Idea: Kitcher says maths is an 'idealising theory', like some in physics; maths idealises features of the world, and practical operations, such as segregating and matching (numbering), measuring, cutting, moving, assembling (geometry), and collecting (sets).
     From: report of Philip Kitcher (The Nature of Mathematical Knowledge [1984]) by Michael D. Resnik - Maths as a Science of Patterns One.4.2.2
     A reaction: This seems to be an interesting line, which is trying to be fairly empirical, and avoid basing mathematics on purely a priori understanding. Nevertheless, we do not learn idealisation from experience. Resnik labels Kitcher an anti-realist.
Mathematical a priorism is conceptualist, constructivist or realist [Kitcher]
     Full Idea: Proposals for a priori mathematical knowledge have three main types: conceptualist (true in virtue of concepts), constructivist (a construct of the human mind) and realist (in virtue of mathematical facts).
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 02.3)
     A reaction: Realism is pure platonism. I think I currently vote for conceptualism, with the concepts deriving from the concrete world, and then being extended by fictional additions, and shifts in the notion of what 'number' means.
The interest or beauty of mathematics is when it uses current knowledge to advance undestanding [Kitcher]
     Full Idea: What makes a question interesting or gives it aesthetic appeal is its focussing of the project of advancing mathematical understanding, in light of the concepts and systems of beliefs already achieved.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 09.3)
     A reaction: Kitcher defends explanation (the source of understanding, presumably) in terms of unification with previous theories (the 'concepts and systems'). I always have the impression that mathematicians speak of 'beauty' when they see economy of means.
The 'beauty' or 'interest' of mathematics is just explanatory power [Kitcher]
     Full Idea: Insofar as we can honor claims about the aesthetic qualities or the interest of mathematical inquiries, we should do so by pointing to their explanatory power.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 09.4)
     A reaction: I think this is a good enough account for me (but probably not for my friend Carl!). Beautiful cars are particularly streamlined. Beautiful people look particularly healthy. A beautiful idea is usually wide-ranging.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers stand to measurement as natural numbers stand to counting [Kitcher]
     Full Idea: The real numbers stand to measurement as the natural numbers stand to counting.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.4)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / j. Complex numbers
Complex numbers were only accepted when a geometrical model for them was found [Kitcher]
     Full Idea: An important episode in the acceptance of complex numbers was the development by Wessel, Argand, and Gauss, of a geometrical model of the numbers.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 07.5)
     A reaction: The model was in terms of vectors and rotation. New types of number are spurned until they can be shown to integrate into a range of mathematical practice, at which point mathematicians change the meaning of 'number' (without consulting us).
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
A one-operation is the segregation of a single object [Kitcher]
     Full Idea: We perform a one-operation when we perform a segregative operation in which a single object is segregated.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.3)
     A reaction: This is part of Kitcher's empirical but constructive account of arithmetic, which I find very congenial. He avoids the word 'unit', and goes straight to the concept of 'one' (which he treats as more primitive than zero).
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
The old view is that mathematics is useful in the world because it describes the world [Kitcher]
     Full Idea: There is an old explanation of the utility of mathematics. Mathematics describes the structural features of our world, features which are manifested in the behaviour of all the world's inhabitants.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.1)
     A reaction: He only cites Russell in modern times as sympathising with this view, but Kitcher gives it some backing. I think the view is totally correct. The digression produced by Cantorian infinities has misled us.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
With infinitesimals, you divide by the time, then set the time to zero [Kitcher]
     Full Idea: The method of infinitesimals is that you divide by the time, and then set the time to zero.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 10.2)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
It may be possible to define induction in terms of the ancestral relation [Frege, by Wright,C]
     Full Idea: Frege's account of the ancestral has made it possible, in effect, to define the natural numbers as entities for which induction holds.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Crispin Wright - Frege's Concept of Numbers as Objects 4.xix
     A reaction: This is the opposite of the approach in the Peano Axioms, where induction is used to define the natural numbers.
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Intuition is no basis for securing a priori knowledge, because it is fallible [Kitcher]
     Full Idea: The process of pure intuition does not measure up to the standards required of a priori warrants not because it is sensuous but because it is fallible.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 03.2)
If mathematics comes through intuition, that is either inexplicable, or too subjective [Kitcher]
     Full Idea: If mathematical statements are don't merely report features of transient and private mental entities, it is unclear how pure intuition generates mathematical knowledge. But if they are, they express different propositions for different people and times.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 03.1)
     A reaction: This seems to be the key dilemma which makes Kitcher reject intuition as an a priori route to mathematics. We do, though, just seem to 'see' truths sometimes, and are unable to explain how we do it.
Mathematical intuition is not the type platonism needs [Kitcher]
     Full Idea: The intuitions of which mathematicians speak are not those which Platonism requires.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 03.3)
     A reaction: The point is that it is not taken to be a 'special' ability, but rather a general insight arising from knowledge of mathematics. I take that to be a good account of intuition, which I define as 'inarticulate rationality'.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Mathematical knowledge arises from basic perception [Kitcher]
     Full Idea: Mathematical knowledge arises from rudimentary knowledge acquired by perception.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], Intro)
     A reaction: This is an empiricist manifesto, which asserts his allegiance to Mill, and he gives a sophisticated account of how higher mathematics can be accounted for in this way. Well, he tries to.
My constructivism is mathematics as an idealization of collecting and ordering objects [Kitcher]
     Full Idea: The constructivist position I defend claims that mathematics is an idealized science of operations which can be performed on objects in our environment. It offers an idealized description of operations of collecting and ordering.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], Intro)
     A reaction: I think this is right. What is missing from Kitcher's account (and every other account I've met) is what is meant by 'idealization'. How do you go about idealising something? Hence my interest in the psychology of abstraction.
We derive limited mathematics from ordinary things, and erect powerful theories on their basis [Kitcher]
     Full Idea: I propose that a very limited amount of our mathematical knowledge can be obtained by observations and manipulations of ordinary things. Upon this small base we erect the powerful general theories of modern mathematics.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 05.2)
     A reaction: I agree. The three related processes that take us from the experiential base of mathematics to its lofty heights are generalisation, idealisation and abstraction.
The defenders of complex numbers had to show that they could be expressed in physical terms [Kitcher]
     Full Idea: Proponents of complex numbers had ultimately to argue that the new operations shared with the original paradigms a susceptibility to construal in physical terms. The geometrical models of complex numbers answered to this need.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 07.5)
     A reaction: [A nice example of the verbose ideas which this website aims to express in plain English!] The interest is not that they had to be described physically (which may pander to an uninformed audience), but that they could be so described.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Frege's logic has a hierarchy of object, property, property-of-property etc. [Frege, by Smith,P]
     Full Idea: Frege's general logical system involves a type hierarchy, distinguishing objects from properties from properties-of-properties etc., with every item belonging to a determinate level.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Peter Smith - Intro to Gödel's Theorems 14.1
     A reaction: The Theory of Types went on to apply this hierarchy to classes, where Frege's disastrous Basic Law V flattens the hierarchy of classes, putting them on the same level (Smith p.119)
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Analyticity avoids abstract entities, but can there be truth without reference? [Kitcher]
     Full Idea: Philosophers who hope to avoid commitment to abstract entities by claiming that mathematical statements are analytic must show how analyticity is, or provides a species of, truth not requiring reference.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 04.I)
     A reaction: [the last part is a quotation from W.D. Hart] Kitcher notes that Frege has a better account, because he provides objects to which reference can be made. I like this idea, which seems to raise a very large question, connected to truthmakers.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Arithmetic is an idealizing theory [Kitcher]
     Full Idea: I construe arithmetic as an idealizing theory.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.2)
     A reaction: I find 'generalising' the most helpful word, because everyone seems to understand and accept the idea. 'Idealisation' invokes 'ideals', which lots of people dislike, and lots of philosophers seem to have trouble with 'abstraction'.
Arithmetic is made true by the world, but is also made true by our constructions [Kitcher]
     Full Idea: I want to suggest both that arithmetic owes its truth to the structure of the world and that arithmetic is true in virtue of our constructive activity.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.2)
     A reaction: Well said, but the problem seems no more mysterious to me than the fact that trees grow in the woods and we build houses out of them. I think I will declare myself to be an 'empirical constructivist' about mathematics.
We develop a language for correlations, and use it to perform higher level operations [Kitcher]
     Full Idea: The development of a language for describing our correlational activity itself enables us to perform higher level operations.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.2)
     A reaction: This is because all language itself (apart from proper names) is inherently general, idealised and abstracted. He sees the correlations as the nested collections expressed by set theory.
Constructivism is ontological (that it is the work of an agent) and epistemological (knowable a priori) [Kitcher]
     Full Idea: The constructivist ontological thesis is that mathematics owes its truth to the activity of an actual or ideal subject. The epistemological thesis is that we can have a priori knowledge of this activity, and so recognise its limits.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.5)
     A reaction: The mention of an 'ideal' is Kitcher's personal view. Kitcher embraces the first view, and rejects the second.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualists say we know mathematics a priori by possessing mathematical concepts [Kitcher]
     Full Idea: Conceptualists claim that we have basic a priori knowledge of mathematical axioms in virtue of our possession of mathematical concepts.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 04.1)
     A reaction: I sympathise with this view. If concepts are reasonably clear, they will relate to one another in certain ways. How could they not? And how else would you work out those relations other than by thinking about them?
If meaning makes mathematics true, you still need to say what the meanings refer to [Kitcher]
     Full Idea: Someone who believes that basic truths of mathematics are true in virtue of meaning is not absolved from the task of saying what the referents of mathematical terms are, or ...what mathematical reality is like.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 04.6)
     A reaction: Nice question! He's a fan of getting at the explanatory in mathematics.
7. Existence / A. Nature of Existence / 1. Nature of Existence
Existence is not a first-order property, but the instantiation of a property [Frege, by Read]
     Full Idea: When Kant said that existence was not a property, what he meant was, according to Frege, that existence is not a first-order property - it is not a property of individuals but a property of properties, that the property has an instance.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Stephen Read - Thinking About Logic Ch.5
9. Objects / A. Existence of Objects / 2. Abstract Objects / b. Need for abstracta
Abstract objects were a bad way of explaining the structure in mathematics [Kitcher]
     Full Idea: The original introduction of abstract objects was a bad way of doing justice to the insight that mathematics is concerned with structure.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.1)
     A reaction: I'm a fan of explanations in metaphysics, and hence find the concept of 'bad' explanations in metaphysics particularly intriguing.
12. Knowledge Sources / A. A Priori Knowledge / 1. Nature of the A Priori
A priori knowledge comes from available a priori warrants that produce truth [Kitcher]
     Full Idea: X knows a priori that p iff the belief was produced with an a priori warrant, which is a process which is available to X, and this process is a warrant, and it makes p true.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 01.4)
     A reaction: [compression of a formal spelling-out] This is a modified version of Goldman's reliabilism, for a priori knowledge. It sounds a bit circular and uninformative, but it's a start.
12. Knowledge Sources / A. A Priori Knowledge / 6. A Priori from Reason
In long mathematical proofs we can't remember the original a priori basis [Kitcher]
     Full Idea: When we follow long mathematical proofs we lose our a priori warrants for their beginnings.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 02.2)
     A reaction: Kitcher says Descartes complains about this problem several times in his 'Regulae'. The problem runs even deeper into all reasoning, if you become sceptical about memory. You have to remember step 1 when you do step 2.
12. Knowledge Sources / A. A Priori Knowledge / 9. A Priori from Concepts
Knowledge is a priori if the experience giving you the concepts thus gives you the knowledge [Kitcher]
     Full Idea: Knowledge is independent of experience if any experience which would enable us to acquire the concepts involved would enable us to have the knowledge.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 01.3)
     A reaction: This is the 'conceptualist' view of a priori knowledge, which Kitcher goes on to attack, preferring a 'constructivist' view. The formula here shows that we can't divorce experience entirely from a priori thought. I find conceptualism a congenial view.
12. Knowledge Sources / A. A Priori Knowledge / 10. A Priori as Subjective
We have some self-knowledge a priori, such as knowledge of our own existence [Kitcher]
     Full Idea: One can make a powerful case for supposing that some self-knowledge is a priori. At most, if not all, of our waking moments, each of us knows of herself that she exists.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 01.6)
     A reaction: This is a begrudging concession from a strong opponent to the whole notion of a priori knowledge. I suppose if you ask 'what can be known by thought alone?' then truths about thought ought to be fairly good initial candidates.
13. Knowledge Criteria / A. Justification Problems / 1. Justification / a. Justification issues
A 'warrant' is a process which ensures that a true belief is knowledge [Kitcher]
     Full Idea: A 'warrant' refers to those processes which produce belief 'in the right way': X knows that p iff p, and X believes that p, and X's belief that p was produced by a process which is a warrant for it.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 01.2)
     A reaction: That is, a 'warrant' is a justification which makes a belief acceptable as knowledge. Traditionally, warrants give you certainty (and are, consequently, rather hard to find). I would say, in the modern way, that warrants are agreed by social convention.
13. Knowledge Criteria / A. Justification Problems / 1. Justification / c. Defeasibility
If experiential can defeat a belief, then its justification depends on the defeater's absence [Kitcher, by Casullo]
     Full Idea: According to Kitcher, if experiential evidence can defeat someone's justification for a belief, then their justification depends on the absence of that experiential evidence.
     From: report of Philip Kitcher (The Nature of Mathematical Knowledge [1984], p.89) by Albert Casullo - A Priori Knowledge 2.3
     A reaction: Sounds implausible. There are trillions of possible defeaters for most beliefs, but to say they literally depend on trillions of absences seems a very odd way of seeing the situation
15. Nature of Minds / C. Capacities of Minds / 6. Idealisation
Idealisation trades off accuracy for simplicity, in varying degrees [Kitcher]
     Full Idea: To idealize is to trade accuracy in describing the actual for simplicity of description, and the compromise can sometimes be struck in different ways.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.5)
     A reaction: There is clearly rather more to idealisation than mere simplicity. A matchstick man is not an ideal man.
19. Language / C. Assigning Meanings / 4. Compositionality
Frege's account was top-down and decompositional, not bottom-up and compositional [Frege, by Potter]
     Full Idea: Frege's account was top-down, not bottom-up: he aimed to decompose and discern function-argument structure in already existing sentences, not to explain how those sentences acquired their meanings in the first place.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 03 'Func'
     A reaction: This goes with the holistic account of meaning, which leads to Quine's gavagai and Kuhn's obfuscation of science. I recommend compositionality for everthing.
25. Social Practice / E. Policies / 5. Education / b. Education principles
Learned men gain more in one day than others do in a lifetime [Posidonius]
     Full Idea: In a single day there lies open to men of learning more than there ever does to the unenlightened in the longest of lifetimes.
     From: Posidonius (fragments/reports [c.95 BCE]), quoted by Seneca the Younger - Letters from a Stoic 078
     A reaction: These remarks endorsing the infinite superiority of the educated to the uneducated seem to have been popular in late antiquity. It tends to be the religions which discourage great learning, especially in their emphasis on a single book.
27. Natural Reality / D. Time / 1. Nature of Time / d. Time as measure
Time is an interval of motion, or the measure of speed [Posidonius, by Stobaeus]
     Full Idea: Posidonius defined time thus: it is an interval of motion, or the measure of speed and slowness.
     From: report of Posidonius (fragments/reports [c.95 BCE]) by John Stobaeus - Anthology 1.08.42
     A reaction: Hm. Can we define motion or speed without alluding to time? Looks like we have to define them as a conjoined pair, which means we cannot fully understand either of them.
28. God / B. Proving God / 2. Proofs of Reason / b. Ontological Proof critique
The predicate 'exists' is actually a natural language expression for a quantifier [Frege, by Weiner]
     Full Idea: On Frege's logical analysis, the predicate 'exists' is actually a natural language expression for a quantifier.
     From: report of Gottlob Frege (Begriffsschrift [1879]) by Joan Weiner - Frege Ch.8
     A reaction: However see Idea 6067, for McGinn's alternative view of quantifiers. In the normal conventions of predicate logic it may be that existence is treated as a quantifier, but that is not the same as saying that existence just IS a quantifier.