Combining Texts

All the ideas for 'fragments/reports', 'Intro: Theories of Vagueness' and 'First-Order Modal Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


63 ideas

4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Each line of a truth table is a model [Fitting/Mendelsohn]
     Full Idea: Each line of a truth table is, in effect, a model.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
     A reaction: I find this comment illuminating. It is being connected with the more complex models of modal logic. Each line of a truth table is a picture of how the world might be.
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / a. Symbols of ML
Modal logic adds □ (necessarily) and ◊ (possibly) to classical logic [Fitting/Mendelsohn]
     Full Idea: For modal logic we add to the syntax of classical logic two new unary operators □ (necessarily) and ◊ (possibly).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.3)
We let 'R' be the accessibility relation: xRy is read 'y is accessible from x' [Fitting/Mendelsohn]
     Full Idea: We let 'R' be the accessibility relation: xRy is read 'y is accessible from x'.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.5)
The symbol ||- is the 'forcing' relation; 'Γ ||- P' means that P is true in world Γ [Fitting/Mendelsohn]
     Full Idea: The symbol ||- is used for the 'forcing' relation, as in 'Γ ||- P', which means that P is true in world Γ.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
The prefix σ names a possible world, and σ.n names a world accessible from that one [Fitting/Mendelsohn]
     Full Idea: A 'prefix' is a finite sequence of positive integers. A 'prefixed formula' is an expression of the form σ X, where σ is a prefix and X is a formula. A prefix names a possible world, and σ.n names a world accessible from that one.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / b. Terminology of ML
A 'constant' domain is the same for all worlds; 'varying' domains can be entirely separate [Fitting/Mendelsohn]
     Full Idea: In 'constant domain' semantics, the domain of each possible world is the same as every other; in 'varying domain' semantics, the domains need not coincide, or even overlap.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.5)
Modern modal logic introduces 'accessibility', saying xRy means 'y is accessible from x' [Fitting/Mendelsohn]
     Full Idea: Modern modal logic takes into consideration the way the modal relates the possible worlds, called the 'accessibility' relation. .. We let R be the accessibility relation, and xRy reads as 'y is accessible from x.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.5)
     A reaction: There are various types of accessibility, and these define the various modal logics.
A 'model' is a frame plus specification of propositions true at worlds, written < G,R,||- > [Fitting/Mendelsohn]
     Full Idea: A 'model' is a frame plus a specification of which propositional letters are true at which worlds. It is written as , where ||- is a relation between possible worlds and propositional letters. So Γ ||- P means P is true at world Γ.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
A 'frame' is a set G of possible worlds, with an accessibility relation R, written < G,R > [Fitting/Mendelsohn]
     Full Idea: A 'frame' consists of a non-empty set G, whose members are generally called possible worlds, and a binary relation R, on G, generally called the accessibility relation. We say the frame is the pair so that a single object can be talked about.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
Accessibility relations can be 'reflexive' (self-referring), 'transitive' (carries over), or 'symmetric' (mutual) [Fitting/Mendelsohn]
     Full Idea: A relation R is 'reflexive' if every world is accessible from itself; 'transitive' if the first world is related to the third world (ΓRΔ and ΔRΩ → ΓRΩ); and 'symmetric' if the accessibility relation is mutual.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.7)
     A reaction: The different systems of modal logic largely depend on how these accessibility relations are specified. There is also the 'serial' relation, which just says that any world has another world accessible to it.
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / c. Derivation rules of ML
S5: a) if n ◊X then kX b) if n ¬□X then k ¬X c) if n □X then k X d) if n ¬◊X then k ¬X [Fitting/Mendelsohn]
     Full Idea: Simplified S5 rules: a) if n ◊X then kX b) if n ¬□X then k ¬X c) if n □X then k X d) if n ¬◊X then k ¬X. 'n' picks any world; in a) and b) 'k' asserts a new world; in c) and d) 'k' refers to a known world
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
Negation: if σ ¬¬X then σ X [Fitting/Mendelsohn]
     Full Idea: General tableau rule for negation: if σ ¬¬X then σ X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Disj: a) if σ ¬(X∨Y) then σ ¬X and σ ¬Y b) if σ X∨Y then σ X or σ Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for disjunctions: a) if σ ¬(X ∨ Y) then σ ¬X and σ ¬Y b) if σ X ∨ Y then σ X or σ Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Existential: a) if σ ◊X then σ.n X b) if σ ¬□X then σ.n ¬X [n is new] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for existential modality: a) if σ ◊ X then σ.n X b) if σ ¬□ X then σ.n ¬X , where n introduces some new world (rather than referring to a world that can be seen).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
     A reaction: Note that the existential rule of ◊, usually read as 'possibly', asserts something about a new as yet unseen world, whereas □ only refers to worlds which can already be seen,
T reflexive: a) if σ □X then σ X b) if σ ¬◊X then σ ¬X [Fitting/Mendelsohn]
     Full Idea: System T reflexive rules (also for B, S4, S5): a) if σ □X then σ X b) if σ ¬◊X then σ ¬X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
D serial: a) if σ □X then σ ◊X b) if σ ¬◊X then σ ¬□X [Fitting/Mendelsohn]
     Full Idea: System D serial rules (also for T, B, S4, S5): a) if σ □X then σ ◊X b) if σ ¬◊X then σ ¬□X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
B symmetric: a) if σ.n □X then σ X b) if σ.n ¬◊X then σ ¬X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System B symmetric rules (also for S5): a) if σ.n □X then σ X b) if σ.n ¬◊X then σ ¬X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
4 transitive: a) if σ □X then σ.n □X b) if σ ¬◊X then σ.n ¬◊X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System 4 transitive rules (also for K4, S4, S5): a) if σ □X then σ.n □X b) if σ ¬◊X then σ.n ¬◊X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
4r rev-trans: a) if σ.n □X then σ □X b) if σ.n ¬◊X then σ ¬◊X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System 4r reversed-transitive rules (also for S5): a) if σ.n □X then σ □X b) if σ.n ¬◊X then σ ¬◊X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
If a proposition is possibly true in a world, it is true in some world accessible from that world [Fitting/Mendelsohn]
     Full Idea: If a proposition is possibly true in a world, then it is also true in some world which is accessible from that world. That is: Γ ||- ◊X ↔ for some Δ ∈ G, ΓRΔ then Δ ||- X.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
If a proposition is necessarily true in a world, it is true in all worlds accessible from that world [Fitting/Mendelsohn]
     Full Idea: If a proposition is necessarily true in a world, then it is also true in all worlds which are accessible from that world. That is: Γ ||- □X ↔ for every Δ ∈ G, if ΓRΔ then Δ ||- X.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
Conj: a) if σ X∧Y then σ X and σ Y b) if σ ¬(X∧Y) then σ ¬X or σ ¬Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for conjunctions: a) if σ X ∧ Y then σ X and σ Y b) if σ ¬(X ∧ Y) then σ ¬X or σ ¬Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Bicon: a)if σ(X↔Y) then σ(X→Y) and σ(Y→X) b) [not biconditional, one or other fails] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for biconditionals: a) if σ (X ↔ Y) then σ (X → Y) and σ (Y → X) b) if σ ¬(X ↔ Y) then σ ¬(X → Y) or σ ¬(Y → X)
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Implic: a) if σ ¬(X→Y) then σ X and σ ¬Y b) if σ X→Y then σ ¬X or σ Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for implications: a) if σ ¬(X → Y) then σ X and σ ¬Y b) if σ X → Y then σ ¬X or σ Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Universal: a) if σ ¬◊X then σ.m ¬X b) if σ □X then σ.m X [m exists] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for universal modality: a) if σ ¬◊ X then σ.m ¬X b) if σ □ X then σ.m X , where m refers to a world that can be seen (rather than introducing a new world).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
     A reaction: Note that the universal rule of □, usually read as 'necessary', only refers to worlds which can already be seen, whereas possibility (◊) asserts some thing about a new as yet unseen world.
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / b. System K
The system K has no accessibility conditions [Fitting/Mendelsohn]
     Full Idea: The system K has no frame conditions imposed on its accessibility relation.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
     A reaction: The system is named K in honour of Saul Kripke.
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / c. System D
□P → P is not valid in D (Deontic Logic), since an obligatory action may be not performed [Fitting/Mendelsohn]
     Full Idea: System D is usually thought of as Deontic Logic, concerning obligations and permissions. □P → P is not valid in D, since just because an action is obligatory, it does not follow that it is performed.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.12.2 Ex)
The system D has the 'serial' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system D has the 'serial' condition imposed on its accessibility relation - that is, every world must have some world which is accessible to it.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / d. System T
The system T has the 'reflexive' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system T has the 'reflexive' condition imposed on its accessibility relation - that is, every world must be accessible to itself.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / e. System K4
The system K4 has the 'transitive' condition on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system K4 has the 'transitive' condition imposed on its accessibility relation - that is, if a relation holds between worlds 1 and 2 and worlds 2 and 3, it must hold between worlds 1 and 3. The relation carries over.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / f. System B
The system B has the 'reflexive' and 'symmetric' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system B has the 'reflexive' and 'symmetric' conditions imposed on its accessibility relation - that is, every world must be accessible to itself, and any relation between worlds must be mutual.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
The system S4 has the 'reflexive' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system S4 has the 'reflexive' and 'transitive' conditions imposed on its accessibility relation - that is, every world is accessible to itself, and accessibility carries over a series of worlds.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
S5 collapses iterated modalities (◊□P→□P, and ◊◊P→◊P) [Keefe/Smith]
     Full Idea: S5 collapses iterated modalities (so ◊□P → □P, and ◊◊P → ◊P).
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §5)
     A reaction: It is obvious why this might be controversial, and there seems to be a general preference for S4. There may be confusions of epistemic and ontic (and even semantic?) possibilities within a single string of modalities.
System S5 has the 'reflexive', 'symmetric' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system S5 has the 'reflexive', 'symmetric' and 'transitive' conditions imposed on its accessibility relation - that is, every world is self-accessible, and accessibility is mutual, and it carries over a series of worlds.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
     A reaction: S5 has total accessibility, and hence is the most powerful system (though it might be too powerful).
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
Modality affects content, because P→◊P is valid, but ◊P→P isn't [Fitting/Mendelsohn]
     Full Idea: P→◊P is usually considered to be valid, but its converse, ◊P→P is not, so (by Frege's own criterion) P and possibly-P differ in conceptual content, and there is no reason why logic should not be widened to accommodate this.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.2)
     A reaction: Frege had denied that modality affected the content of a proposition (1879:p.4). The observation here is the foundation for the need for a modal logic.
4. Formal Logic / D. Modal Logic ML / 5. Epistemic Logic
In epistemic logic knowers are logically omniscient, so they know that they know [Fitting/Mendelsohn]
     Full Idea: In epistemic logic the knower is treated as logically omniscient. This is puzzling because one then cannot know something and yet fail to know that one knows it (the Principle of Positive Introspection).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.11)
     A reaction: This is nowadays known as the K-K Problem - to know, must you know that you know. Broadly, we find that externalists say you don't need to know that you know (so animals know things), but internalists say you do need to know that you know.
Read epistemic box as 'a knows/believes P' and diamond as 'for all a knows/believes, P' [Fitting/Mendelsohn]
     Full Idea: In epistemic logic we read Υ as 'KaP: a knows that P', and ◊ as 'PaP: it is possible, for all a knows, that P' (a is an individual). For belief we read them as 'BaP: a believes that P' and 'CaP: compatible with everything a believes that P'.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.11)
     A reaction: [scripted capitals and subscripts are involved] Hintikka 1962 is the source of this. Fitting and Mendelsohn prefer □ to read 'a is entitled to know P', rather than 'a knows that P'.
4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
F: will sometime, P: was sometime, G: will always, H: was always [Fitting/Mendelsohn]
     Full Idea: We introduce four future and past tense operators: FP: it will sometime be the case that P. PP: it was sometime the case that P. GP: it will always be the case that P. HP: it has always been the case that P. (P itself is untensed).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.10)
     A reaction: Temporal logic begins with A.N. Prior, and starts with □ as 'always', and ◊ as 'sometimes', but then adds these past and future divisions. Two different logics emerge, taking □ and ◊ as either past or as future.
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The Barcan says nothing comes into existence; the Converse says nothing ceases; the pair imply stability [Fitting/Mendelsohn]
     Full Idea: The Converse Barcan says nothing passes out of existence in alternative situations. The Barcan says that nothing comes into existence. The two together say the same things exist no matter what the situation.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.9)
     A reaction: I take the big problem to be that these reflect what it is you want to say, and that does not keep stable across a conversation, so ordinary rational discussion sometimes asserts these formulas, and 30 seconds later denies them.
The Barcan corresponds to anti-monotonicity, and the Converse to monotonicity [Fitting/Mendelsohn]
     Full Idea: The Barcan formula corresponds to anti-monotonicity, and the Converse Barcan formula corresponds to monotonicity.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 6.3)
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
'Predicate abstraction' abstracts predicates from formulae, giving scope for constants and functions [Fitting/Mendelsohn]
     Full Idea: 'Predicate abstraction' is a key idea. It is a syntactic mechanism for abstracting a predicate from a formula, providing a scoping mechanism for constants and function symbols similar to that provided for variables by quantifiers.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], Pref)
7. Existence / D. Theories of Reality / 10. Vagueness / b. Vagueness of reality
Objects such as a cloud or Mount Everest seem to have fuzzy boundaries in nature [Keefe/Smith]
     Full Idea: A common intuition is that a vague object has indeterminate or fuzzy spatio-temporal boundaries, such as a cloud. Mount Everest can only have arbitrary boundaries placed around it, so in nature it must have fuzzy boundaries.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §5)
     A reaction: We would have to respond by questioning whether Everest counts precisely as an 'object'. At the microscopic or subatomic level it seems that virtually everything has fuzzy boundaries. Maybe boundaries don't really exist.
7. Existence / D. Theories of Reality / 10. Vagueness / c. Vagueness as ignorance
If someone is borderline tall, no further information is likely to resolve the question [Keefe/Smith]
     Full Idea: If Tek is borderline tall, the unclarity does not seem to be epistemic, because no amount of further information about his exact height (or the heights of others) could help us decide whether he is tall.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §1)
     A reaction: One should add also that information about social conventions or conventions about the usage of the word 'tall' will not help either. It seems fairly obvious that God would not know whether Tek is tall, so the epistemic view is certainly counterintuitive.
The simplest approach, that vagueness is just ignorance, retains classical logic and semantics [Keefe/Smith]
     Full Idea: The simplest approach to vagueness is to retain classical logic and semantics. Borderline cases are either true or false, but we don't know which, and, despite appearances, vague predicates have well-defined extensions. Vagueness is ignorance.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §1)
     A reaction: It seems to me that you must have a rather unhealthy attachment to the logicians' view of the world to take this line. It is the passion of the stamp collector, to want everything in sets, with neatly labelled properties, and inference lines marked out.
The epistemic view of vagueness must explain why we don't know the predicate boundary [Keefe/Smith]
     Full Idea: A key question for the epistemic view of vagueness is: why are we ignorant of the facts about where the boundaries of vague predicates lie?
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §2)
     A reaction: Presumably there is a range of answers, from laziness, to inability to afford the instruments, to limitations on human perception. At the limit, with physical objects, how do we tell whether it is us or the object which is afflicted with vagueness?
7. Existence / D. Theories of Reality / 10. Vagueness / f. Supervaluation for vagueness
Supervaluationism keeps true-or-false where precision can be produced, but not otherwise [Keefe/Smith]
     Full Idea: The supervaluationist view of vagueness is that 'tall' comes out true or false on all the ways in which we can make 'tall' precise. There is a gap for borderline cases, but 'tall or not-tall' is still true wherever you draw a boundary.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §1)
     A reaction: [Kit Fine is the spokesperson for this; it preserves classical logic, but not semantics] This doesn't seem to solve the problem of vagueness, but it does (sort of) save the principle of excluded middle.
Vague statements lack truth value if attempts to make them precise fail [Keefe/Smith]
     Full Idea: The supervaluationist view of vagueness proposes that a sentence is true iff it is true on all precisifications, false iff false on all precisifications, and neither true nor false otherwise.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §3)
     A reaction: This seems to be just a footnote to the Russell/Unger view, that logic works if the proposition is precise, but otherwise it is either just the mess of ordinary life, or the predicate doesn't apply at all.
Some of the principles of classical logic still fail with supervaluationism [Keefe/Smith]
     Full Idea: Supervaluationist logic (now with a 'definite' operator D) fails to preserve certain classical principles about consequence and rules of inference. For example, reduction ad absurdum, contraposition, the deduction theorem and argument by cases.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §3)
     A reaction: The aim of supervaluationism was to try to preserve some classical logic, especially the law of excluded middle, in the face of problems of vagueness. More drastic views, like treating vagueness as irrelevant to logic, or the epistemic view, do better.
The semantics of supervaluation (e.g. disjunction and quantification) is not classical [Keefe/Smith]
     Full Idea: The semantics of supervaluational views is not classical. A disjunction can be true without either of its disjuncts being true, and an existential quantification can be true without any of its substitution instances being true.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §3)
     A reaction: There is a vaguely plausible story here (either red or orange, but not definitely one nor tother; there exists an x, but which x it is is undecidable), but I think I will vote for this all being very very wrong.
Supervaluation misunderstands vagueness, treating it as a failure to make things precise [Keefe/Smith]
     Full Idea: Why should we think vague language is explained away by how things would be if it were made precise? Supervaluationism misrepresents vague expressions, as vague only because we have not bothered to make them precise.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §3)
     A reaction: The theory still leaves a gap where vagueness is ineradicable, so the charge doesn't seem quite fair. Logicians always yearn for precision, but common speech enjoys wallowing in a sea of easy-going vagueness, which works fine.
7. Existence / D. Theories of Reality / 10. Vagueness / g. Degrees of vagueness
A third truth-value at borderlines might be 'indeterminate', or a value somewhere between 0 and 1 [Keefe/Smith]
     Full Idea: One approach to predications in borderline cases is to say that they have a third truth value - 'neutral', 'indeterminate' or 'indefinite', leading to a three-valued logic. Or a degree theory, such as fuzzy logic, with infinite values between 0 and 1.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §1)
     A reaction: This looks more like a strategy for computer programmers than for metaphysicians, as it doesn't seem to solve the difficulty of things to which no one can quite assign any value at all. Sometimes you can't be sure if an entity is vague.
People can't be placed in a precise order according to how 'nice' they are [Keefe/Smith]
     Full Idea: There is no complete ordering of people by niceness, and two people could be both fairly nice, nice to intermediate degrees, while there is no fact of the matter about who is the nicer.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §4)
     A reaction: This is a difficulty if you are trying to decide vague predicates by awarding them degrees of truth. Attempts to place a precise value on 'nice' seem to miss the point, even more than utilitarian attempts to score happiness.
If truth-values for vagueness range from 0 to 1, there must be someone who is 'completely tall' [Keefe/Smith]
     Full Idea: Many-valued theories still seem to have a sharp boundary between sentences taking truth-value 1 and those taking value less than 1. So there is a last man in our sorites series who counts as 'completely tall'.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §4)
     A reaction: Lovely. Completely nice, totally red, perfectly childlike, an utter mountain, one hundred per cent amused. The enterprise seems to have the same implausibility found in Bayesian approaches to assessing evidence.
How do we decide if my coat is red to degree 0.322 or 0.321? [Keefe/Smith]
     Full Idea: What could determine which is the correct function, settling that my coat is red to degree 0.322 rather than 0.321?
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §4)
     A reaction: It is not just the uncertainty of placing the coat on the scale. The two ends of the scale have all the indeterminacy of being red rather than orange (or, indeed, pink). You are struggling to find a spot on the ruler, when the ruler is placed vaguely.
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
Vague predicates involve uncertain properties, uncertain objects, and paradoxes of gradual change [Keefe/Smith]
     Full Idea: Three interrelated features of vague predicates such as 'tall', 'red', 'heap', 'child' are that they have borderline cases (application is uncertain), they lack well-defined extensions (objects are uncertain), and they're susceptible to sorites paradoxes.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §1)
     A reaction: The issue will partly depend on what you think an object is: choose from bundles of properties, total denial, essential substance, or featureless substance with properties. The fungal infection of vagueness could creep in at any point, even the words.
Many vague predicates are multi-dimensional; 'big' involves height and volume; heaps include arrangement [Keefe/Smith]
     Full Idea: Many vague predicates are multi-dimensional. 'Big' of people depends on both height and volume; 'nice' does not even have clear dimensions; whether something is a 'heap' depends both the number of grains and their arrangement.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §1)
     A reaction: Anyone who was hoping for a nice tidy theory for this problem should abandon hope at this point. Huge numbers of philosophical problems can be simplified by asking 'what exactly do you mean here?' (e.g. tall or bulky?).
If there is a precise borderline area, that is not a case of vagueness [Keefe/Smith]
     Full Idea: If a predicate G has a sharply-bounded set of cases falling in between the positive and negative, this shows that merely having borderline cases is not sufficient for vagueness.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §1)
     A reaction: Thus you might have 'pass', 'fail' and 'take the test again'. But there seem to be two cases in the border area: will decide later, and decision seems impossible. And the sharp boundaries may be quite arbitrary.
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The Indiscernibility of Identicals has been a big problem for modal logic [Fitting/Mendelsohn]
     Full Idea: Equality has caused much grief for modal logic. Many of the problems, which have struck at the heart of the coherence of modal logic, stem from the apparent violations of the Indiscernibility of Identicals.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 7.1)
     A reaction: Thus when I say 'I might have been three inches taller', presumably I am referring to someone who is 'identical' to me, but who lacks one of my properties. A simple solution is to say that the person is 'essentially' identical.
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
□ must be sensitive as to whether it picks out an object by essential or by contingent properties [Fitting/Mendelsohn]
     Full Idea: If □ is to be sensitive to the quality of the truth of a proposition in its scope, then it must be sensitive as to whether an object is picked out by an essential property or by a contingent one.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.3)
     A reaction: This incredibly simple idea strikes me as being powerful and important. ...However, creating illustrative examples leaves me in a state of confusion. You try it. They cite '9' and 'number of planets'. But is it just nominal essence? '9' must be 9.
Objects retain their possible properties across worlds, so a bundle theory of them seems best [Fitting/Mendelsohn]
     Full Idea: The property of 'possibly being a Republican' is as much a property of Bill Clinton as is 'being a democrat'. So we don't peel off his properties from world to world. Hence the bundle theory fits our treatment of objects better than bare particulars.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 7.3)
     A reaction: This bundle theory is better described in recent parlance as the 'modal profile'. I am reluctant to talk of a modal truth about something as one of its 'properties'. An objects, then, is a bundle of truths?
10. Modality / E. Possible worlds / 3. Transworld Objects / c. Counterparts
Counterpart relations are neither symmetric nor transitive, so there is no logic of equality for them [Fitting/Mendelsohn]
     Full Idea: The main technical problem with counterpart theory is that the being-a-counterpart relation is, in general, neither symmetric nor transitive, so no natural logic of equality is forthcoming.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.5)
     A reaction: That is, nothing is equal to a counterpart, either directly or indirectly.
25. Social Practice / E. Policies / 5. Education / b. Education principles
Learned men gain more in one day than others do in a lifetime [Posidonius]
     Full Idea: In a single day there lies open to men of learning more than there ever does to the unenlightened in the longest of lifetimes.
     From: Posidonius (fragments/reports [c.95 BCE]), quoted by Seneca the Younger - Letters from a Stoic 078
     A reaction: These remarks endorsing the infinite superiority of the educated to the uneducated seem to have been popular in late antiquity. It tends to be the religions which discourage great learning, especially in their emphasis on a single book.
27. Natural Reality / D. Time / 1. Nature of Time / d. Time as measure
Time is an interval of motion, or the measure of speed [Posidonius, by Stobaeus]
     Full Idea: Posidonius defined time thus: it is an interval of motion, or the measure of speed and slowness.
     From: report of Posidonius (fragments/reports [c.95 BCE]) by John Stobaeus - Anthology 1.08.42
     A reaction: Hm. Can we define motion or speed without alluding to time? Looks like we have to define them as a conjoined pair, which means we cannot fully understand either of them.