Combining Texts

All the ideas for 'fragments/reports', 'Thinking About Logic' and 'Introduction to Mathematical Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


63 ideas

4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Post proved the consistency of propositional logic in 1921 [Walicki]
     Full Idea: A proof of the consistency of propositional logic was given by Emil Post in 1921.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2.1)
Propositional language can only relate statements as the same or as different [Walicki]
     Full Idea: Propositional language is very rudimentary and has limited powers of expression. The only relation between various statements it can handle is that of identity and difference. As are all the same, but Bs can be different from As.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 7 Intro)
     A reaction: [second sentence a paraphrase] In predicate logic you could represent two statements as being the same except for one element (an object or predicate or relation or quantifier).
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
Three traditional names of rules are 'Simplification', 'Addition' and 'Disjunctive Syllogism' [Read]
     Full Idea: Three traditional names for rules are 'Simplification' (P from 'P and Q'), 'Addition' ('P or Q' from P), and 'Disjunctive Syllogism' (Q from 'P or Q' and 'not-P').
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Boolean connectives are interpreted as functions on the set {1,0} [Walicki]
     Full Idea: Boolean connectives are interpreted as functions on the set {1,0}.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 5.1)
     A reaction: 1 and 0 are normally taken to be true (T) and false (F). Thus the functions output various combinations of true and false, which are truth tables.
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / a. Systems of modal logic
Necessity is provability in S4, and true in all worlds in S5 [Read]
     Full Idea: In S4 necessity is said to be informal 'provability', and in S5 it is said to be 'true in every possible world'.
     From: Stephen Read (Thinking About Logic [1995], Ch.4)
     A reaction: It seems that the S4 version is proof-theoretic, and the S5 version is semantic.
4. Formal Logic / E. Nonclassical Logics / 4. Fuzzy Logic
There are fuzzy predicates (and sets), and fuzzy quantifiers and modifiers [Read]
     Full Idea: In fuzzy logic, besides fuzzy predicates, which define fuzzy sets, there are also fuzzy quantifiers (such as 'most' and 'few') and fuzzy modifiers (such as 'usually').
     From: Stephen Read (Thinking About Logic [1995], Ch.7)
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Same say there are positive, negative and neuter free logics [Read]
     Full Idea: It is normal to classify free logics into three sorts; positive free logics (some propositions with empty terms are true), negative free logics (they are false), and neuter free logics (they lack truth-value), though I find this unhelpful and superficial.
     From: Stephen Read (Thinking About Logic [1995], Ch.5)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The empty set is useful for defining sets by properties, when the members are not yet known [Walicki]
     Full Idea: The empty set is mainly a mathematical convenience - defining a set by describing the properties of its members in an involved way, we may not know from the very beginning what its members are.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 1.1)
The empty set avoids having to take special precautions in case members vanish [Walicki]
     Full Idea: Without the assumption of the empty set, one would often have to take special precautions for the case where a set happened to contain no elements.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 1.1)
     A reaction: Compare the introduction of the concept 'zero', where special precautions are therefore required. ...But other special precautions are needed without zero. Either he pays us, or we pay him, or ...er. Intersecting sets need the empty set.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
Realisms like the full Comprehension Principle, that all good concepts determine sets [Read]
     Full Idea: Hard-headed realism tends to embrace the full Comprehension Principle, that every well-defined concept determines a set.
     From: Stephen Read (Thinking About Logic [1995], Ch.8)
     A reaction: This sort of thing gets you into trouble with Russell's paradox (though that is presumably meant to be excluded somehow by 'well-defined'). There are lots of diluted Comprehension Principles.
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
Ordinals play the central role in set theory, providing the model of well-ordering [Walicki]
     Full Idea: Ordinals play the central role in set theory, providing the paradigmatic well-orderings.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: When you draw the big V of the iterative hierarchy of sets (built from successive power sets), the ordinals are marked as a single line up the middle, one ordinal for each level.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
To determine the patterns in logic, one must identify its 'building blocks' [Walicki]
     Full Idea: In order to construct precise and valid patterns of arguments one has to determine their 'building blocks'. One has to identify the basic terms, their kinds and means of combination.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History Intro)
     A reaction: A deceptively simple and important idea. All explanation requires patterns and levels, and it is the idea of building blocks which makes such things possible. It is right at the centre of our grasp of everything.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
Not all validity is captured in first-order logic [Read]
     Full Idea: We must recognise that first-order classical logic is inadequate to describe all valid consequences, that is, all cases in which it is impossible for the premisses to be true and the conclusion false.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: This is despite the fact that first-order logic is 'complete', in the sense that its own truths are all provable.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
The non-emptiness of the domain is characteristic of classical logic [Read]
     Full Idea: The non-emptiness of the domain is characteristic of classical logic.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Semantics must precede proof in higher-order logics, since they are incomplete [Read]
     Full Idea: For the realist, study of semantic structures comes before study of proofs. In higher-order logic is has to, for the logics are incomplete.
     From: Stephen Read (Thinking About Logic [1995], Ch.9)
     A reaction: This seems to be an important general observation about any incomplete system, such as Peano arithmetic. You may dream the old rationalist dream of starting from the beginning and proving everything, but you can't. Start with truth and meaning.
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
We should exclude second-order logic, precisely because it captures arithmetic [Read]
     Full Idea: Those who believe mathematics goes beyond logic use that fact to argue that classical logic is right to exclude second-order logic.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
A theory of logical consequence is a conceptual analysis, and a set of validity techniques [Read]
     Full Idea: A theory of logical consequence, while requiring a conceptual analysis of consequence, also searches for a set of techniques to determine the validity of particular arguments.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
Logical consequence isn't just a matter of form; it depends on connections like round-square [Read]
     Full Idea: If classical logic insists that logical consequence is just a matter of the form, we fail to include as valid consequences those inferences whose correctness depends on the connections between non-logical terms (such as 'round' and 'square').
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: He suggests that an inference such as 'round, so not square' should be labelled as 'materially valid'.
5. Theory of Logic / E. Structures of Logic / 8. Theories in Logic
A theory is logically closed, which means infinite premisses [Read]
     Full Idea: A 'theory' is any logically closed set of propositions, ..and since any proposition has infinitely many consequences, including all the logical truths, so that theories have infinitely many premisses.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: Read is introducing this as the essential preliminary to an account of the Compactness Theorem, which relates these infinite premisses to the finite.
5. Theory of Logic / G. Quantification / 1. Quantification
Quantifiers are second-order predicates [Read]
     Full Idea: Quantifiers are second-order predicates.
     From: Stephen Read (Thinking About Logic [1995], Ch.5)
     A reaction: [He calls this 'Frege's insight'] They seem to be second-order in Tarski's sense, that they are part of a metalanguage about the sentence, rather than being a part of the sentence.
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
In second-order logic the higher-order variables range over all the properties of the objects [Read]
     Full Idea: The defining factor of second-order logic is that, while the domain of its individual variables may be arbitrary, the range of the first-order variables is all the properties of the objects in its domain (or, thinking extensionally, of the sets objects).
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: The key point is that the domain is 'all' of the properties. How many properties does an object have. You need to decide whether you believe in sparse or abundant properties (I vote for very sparse indeed).
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
A logical truth is the conclusion of a valid inference with no premisses [Read]
     Full Idea: Logical truth is a degenerate, or extreme, case of consequence. A logical truth is the conclusion of a valid inference with no premisses, or a proposition in the premisses of an argument which is unnecessary or may be suppressed.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' of a theory specifies interpreting a language in a domain to make all theorems true [Walicki]
     Full Idea: A specification of a domain of objects, and of the rules for interpreting the symbols of a logical language in this domain such that all the theorems of the logical theory are true is said to be a 'model' of the theory.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.1.3)
     A reaction: The basic ideas of this emerged 1915-30, but it needed Tarski's account of truth to really get it going.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Any first-order theory of sets is inadequate [Read]
     Full Idea: Any first-order theory of sets is inadequate because of the Löwenheim-Skolem-Tarski property, and the consequent Skolem paradox.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: The limitation is in giving an account of infinities.
The L-S Theorem says no theory (even of reals) says more than a natural number theory [Walicki]
     Full Idea: The L-S Theorem is ...a shocking result, since it implies that any consistent formal theory of everything - even about biology, physics, sets or the real numbers - can just as well be understood as being about natural numbers. It says nothing more.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2)
     A reaction: Illuminating. Particularly the point that no theory about the real numbers can say anything more than a theory about the natural numbers. So the natural numbers contain all the truths we can ever express? Eh?????
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
A compact axiomatisation makes it possible to understand a field as a whole [Walicki]
     Full Idea: Having such a compact [axiomatic] presentation of a complicated field [such as Euclid's], makes it possible to relate not only to particular theorems but also to the whole field as such.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
Axiomatic systems are purely syntactic, and do not presuppose any interpretation [Walicki]
     Full Idea: Axiomatic systems, their primitive terms and proofs, are purely syntactic, that is, do not presuppose any interpretation. ...[142] They never address the world directly, but address a possible semantic model which formally represents the world.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
5. Theory of Logic / K. Features of Logics / 6. Compactness
Compactness is when any consequence of infinite propositions is the consequence of a finite subset [Read]
     Full Idea: Classical logical consequence is compact, which means that any consequence of an infinite set of propositions (such as a theory) is a consequence of some finite subset of them.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
Compactness does not deny that an inference can have infinitely many premisses [Read]
     Full Idea: Compactness does not deny that an inference can have infinitely many premisses. It can; but classically, it is valid if and only if the conclusion follows from a finite subset of them.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
Compactness blocks the proof of 'for every n, A(n)' (as the proof would be infinite) [Read]
     Full Idea: Compact consequence undergenerates - there are intuitively valid consequences which it marks as invalid, such as the ω-rule, that if A holds of the natural numbers, then 'for every n, A(n)', but the proof of that would be infinite, for each number.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
Compactness makes consequence manageable, but restricts expressive power [Read]
     Full Idea: Compactness is a virtue - it makes the consequence relation more manageable; but it is also a limitation - it limits the expressive power of the logic.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: The major limitation is that wholly infinite proofs are not permitted, as in Idea 10977.
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
Self-reference paradoxes seem to arise only when falsity is involved [Read]
     Full Idea: It cannot be self-reference alone that is at fault. Rather, what seems to cause the problems in the paradoxes is the combination of self-reference with falsity.
     From: Stephen Read (Thinking About Logic [1995], Ch.6)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinals are transitive sets of transitive sets; or transitive sets totally ordered by inclusion [Walicki]
     Full Idea: An ordinal can be defined as a transitive set of transitive sets, or else, as a transitive set totally ordered by set inclusion.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Ordinals are the empty set, union with the singleton, and any arbitrary union of ordinals [Walicki]
     Full Idea: The collection of ordinals is defined inductively: Basis: the empty set is an ordinal; Ind: for an ordinal x, the union with its singleton is also an ordinal; and any arbitrary (possibly infinite) union of ordinals is an ordinal.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: [symbolism translated into English] Walicki says they are called 'ordinal numbers', but are in fact a set.
The union of finite ordinals is the first 'limit ordinal'; 2ω is the second... [Walicki]
     Full Idea: We can form infinite ordinals by taking unions of ordinals. We can thus form 'limit ordinals', which have no immediate predecessor. ω is the first (the union of all finite ordinals), ω + ω = sω is second, 3ω the third....
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Two infinite ordinals can represent a single infinite cardinal [Walicki]
     Full Idea: There may be several ordinals for the same cardinality. ...Two ordinals can represent different ways of well-ordering the same number (aleph-0) of elements.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: This only applies to infinite ordinals and cardinals. For the finite, the two coincide. In infinite arithmetic the rules are different.
Members of ordinals are ordinals, and also subsets of ordinals [Walicki]
     Full Idea: Every member of an ordinal is itself an ordinal, and every ordinal is a transitive set (its members are also its subsets; a member of a member of an ordinal is also a member of the ordinal).
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Infinite cuts and successors seems to suggest an actual infinity there waiting for us [Read]
     Full Idea: Every potential infinity seems to suggest an actual infinity - e.g. generating successors suggests they are really all there already; cutting the line suggests that the point where the cut is made is already in place.
     From: Stephen Read (Thinking About Logic [1995], Ch.8)
     A reaction: Finding a new gambit in chess suggests it was there waiting for us, but we obviously invented chess. Daft.
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
In non-Euclidean geometry, all Euclidean theorems are valid that avoid the fifth postulate [Walicki]
     Full Idea: Since non-Euclidean geometry preserves all Euclid's postulates except the fifth one, all the theorems derived without the use of the fifth postulate remain valid.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Although second-order arithmetic is incomplete, it can fully model normal arithmetic [Read]
     Full Idea: Second-order arithmetic is categorical - indeed, there is a single formula of second-order logic whose only model is the standard model ω, consisting of just the natural numbers, with all of arithmetic following. It is nevertheless incomplete.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: This is the main reason why second-order logic has a big fan club, despite the logic being incomplete (as well as the arithmetic).
Second-order arithmetic covers all properties, ensuring categoricity [Read]
     Full Idea: Second-order arithmetic can rule out the non-standard models (with non-standard numbers). Its induction axiom crucially refers to 'any' property, which gives the needed categoricity for the models.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Inductive proof depends on the choice of the ordering [Walicki]
     Full Idea: Inductive proof is not guaranteed to work in all cases and, particularly, it depends heavily on the choice of the ordering.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.1.1)
     A reaction: There has to be an well-founded ordering for inductive proofs to be possible.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / g. Von Neumann numbers
Von Neumann numbers are helpful, but don't correctly describe numbers [Read]
     Full Idea: The Von Neumann numbers have a structural isomorphism to the natural numbers - each number is the set of all its predecessors, so 2 is the set of 0 and 1. This helps proofs, but is unacceptable. 2 is not a set with two members, or a member of 3.
     From: Stephen Read (Thinking About Logic [1995], Ch.4)
7. Existence / D. Theories of Reality / 10. Vagueness / d. Vagueness as linguistic
Would a language without vagueness be usable at all? [Read]
     Full Idea: We must ask whether a language without vagueness would be usable at all.
     From: Stephen Read (Thinking About Logic [1995], Ch.7)
     A reaction: Popper makes a similar remark somewhere, with which I heartily agreed. This is the idea of 'spreading the word' over the world, which seems the right way of understanding it.
7. Existence / D. Theories of Reality / 10. Vagueness / f. Supervaluation for vagueness
Supervaluations say there is a cut-off somewhere, but at no particular place [Read]
     Full Idea: The supervaluation approach to vagueness is to construe vague predicates not as ones with fuzzy borderlines and no cut-off, but as having a cut-off somewhere, but in no particular place.
     From: Stephen Read (Thinking About Logic [1995], Ch.7)
     A reaction: Presumably you narrow down the gap by supervaluation, then split the difference to get a definite value.
A 'supervaluation' gives a proposition consistent truth-value for classical assignments [Read]
     Full Idea: A 'supervaluation' says a proposition is true if it is true in all classical extensions of the original partial valuation. Thus 'A or not-A' has no valuation for an empty name, but if 'extended' to make A true or not-true, not-A always has opposite value.
     From: Stephen Read (Thinking About Logic [1995], Ch.5)
Identities and the Indiscernibility of Identicals don't work with supervaluations [Read]
     Full Idea: In supervaluations, the Law of Identity has no value for empty names, and remains so if extended. The Indiscernibility of Identicals also fails if extending it for non-denoting terms, where Fa comes out true and Fb false.
     From: Stephen Read (Thinking About Logic [1995], Ch.5)
9. Objects / A. Existence of Objects / 5. Individuation / d. Individuation by haecceity
A haecceity is a set of individual properties, essential to each thing [Read]
     Full Idea: The haecceitist (a neologism coined by Duns Scotus, pronounced 'hex-ee-it-ist', meaning literally 'thisness') believes that each thing has an individual essence, a set of properties which are essential to it.
     From: Stephen Read (Thinking About Logic [1995], Ch.4)
     A reaction: This seems to be a difference of opinion over whether a haecceity is a set of essential properties, or a bare particular. The key point is that it is unique to each entity.
10. Modality / A. Necessity / 2. Nature of Necessity
Scotus based modality on semantic consistency, instead of on what the future could allow [Walicki]
     Full Idea: The link between time and modality was severed by Duns Scotus, who proposed a notion of possibility based purely on the notion of semantic consistency. 'Possible' means for him logically possible, that is, not involving contradiction.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History B.4)
Equating necessity with truth in every possible world is the S5 conception of necessity [Read]
     Full Idea: The equation of 'necessity' with 'true in every possible world' is known as the S5 conception, corresponding to the strongest of C.I.Lewis's five modal systems.
     From: Stephen Read (Thinking About Logic [1995], Ch.4)
     A reaction: Are the worlds naturally, or metaphysically, or logically possible?
10. Modality / B. Possibility / 8. Conditionals / a. Conditionals
The point of conditionals is to show that one will accept modus ponens [Read]
     Full Idea: The point of conditionals is to show that one will accept modus ponens.
     From: Stephen Read (Thinking About Logic [1995], Ch.3)
     A reaction: [He attributes this idea to Frank Jackson] This makes the point, against Grice, that the implication of conditionals is not conversational but a matter of logical convention. See Idea 21396 for a very different view.
The standard view of conditionals is that they are truth-functional [Read]
     Full Idea: The standard view of conditionals is that they are truth-functional, that is, that their truth-values are determined by the truth-values of their constituents.
     From: Stephen Read (Thinking About Logic [1995], Ch.3)
Some people even claim that conditionals do not express propositions [Read]
     Full Idea: Some people even claim that conditionals do not express propositions.
     From: Stephen Read (Thinking About Logic [1995], Ch.7)
     A reaction: See Idea 14283, where this appears to have been 'proved' by Lewis, and is not just a view held by some people.
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
Knowledge of possible worlds is not causal, but is an ontology entailed by semantics [Read]
     Full Idea: The modal Platonist denies that knowledge always depends on a causal relation. The reality of possible worlds is an ontological requirement, to secure the truth-values of modal propositions.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: [Reply to Idea 10982] This seems to be a case of deriving your metaphyics from your semantics, of which David Lewis seems to be guilty, and which strikes me as misguided.
10. Modality / E. Possible worlds / 1. Possible Worlds / c. Possible worlds realism
How can modal Platonists know the truth of a modal proposition? [Read]
     Full Idea: If modal Platonism was true, how could we ever know the truth of a modal proposition?
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: I take this to be very important. Our knowledge of modal truths must depend on our knowledge of the actual world. The best answer seems to involve reference to the 'powers' of the actual world. A reply is in Idea 10983.
10. Modality / E. Possible worlds / 1. Possible Worlds / d. Possible worlds actualism
Actualism is reductionist (to parts of actuality), or moderate realist (accepting real abstractions) [Read]
     Full Idea: There are two main forms of actualism: reductionism, which seeks to construct possible worlds out of some more mundane material; and moderate realism, in which the actual concrete world is contrasted with abstract, but none the less real, possible worlds.
     From: Stephen Read (Thinking About Logic [1995], Ch.4)
     A reaction: I am a reductionist, as I do not take abstractions to be 'real' (precisely because they have been 'abstracted' from the things that are real). I think I will call myself a 'scientific modalist' - we build worlds from possibilities, discovered by science.
10. Modality / E. Possible worlds / 2. Nature of Possible Worlds / c. Worlds as propositions
A possible world is a determination of the truth-values of all propositions of a domain [Read]
     Full Idea: A possible world is a complete determination of the truth-values of all propositions over a certain domain.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: Even if the domain is very small? Even if the world fitted the logic nicely, but was naturally impossible?
10. Modality / E. Possible worlds / 3. Transworld Objects / c. Counterparts
If worlds are concrete, objects can't be present in more than one, and can only have counterparts [Read]
     Full Idea: If each possible world constitutes a concrete reality, then no object can be present in more than one world - objects may have 'counterparts', but cannot be identical with them.
     From: Stephen Read (Thinking About Logic [1995], Ch.4)
     A reaction: This explains clearly why in Lewis's modal realist scheme he needs counterparts instead of rigid designation. Sounds like a slippery slope. If you say 'Humphrey might have won the election', who are you talking about?
15. Nature of Minds / C. Capacities of Minds / 3. Abstraction by mind
The mind abstracts ways things might be, which are nonetheless real [Read]
     Full Idea: Ways things might be are real, but only when abstracted from the actual way things are. They are brought out and distinguished by the mind, by abstraction, but are not dependent on mind for their existence.
     From: Stephen Read (Thinking About Logic [1995], Ch.4)
     A reaction: To me this just flatly contradicts itself. The idea that the mind can 'bring something out' by its operations, with the result being then accepted as part of reality is nonsense on stilts. What is real is the powers that make the possibilities.
19. Language / C. Assigning Meanings / 4. Compositionality
Negative existentials with compositionality make the whole sentence meaningless [Read]
     Full Idea: A problem with compositionality is negative existential propositions. If some of the terms of the proposition are empty, and don't refer, then compositionality implies that the whole will lack meaning too.
     From: Stephen Read (Thinking About Logic [1995], Ch.5)
     A reaction: I don't agree. I don't see why compositionality implies holism about sentence-meaning. If I say 'that circular square is a psychopath', you understand the predication, despite being puzzled by the singular term.
19. Language / D. Propositions / 1. Propositions
A proposition objectifies what a sentence says, as indicative, with secure references [Read]
     Full Idea: A proposition makes an object out of what is said or expressed by the utterance of a certain sort of sentence, namely, one in the indicative mood which makes sense and doesn't fail in its references. It can then be an object of thought and belief.
     From: Stephen Read (Thinking About Logic [1995], Ch.1)
     A reaction: Nice, but two objections: I take it to be crucial to propositions that they eliminate ambiguities, and I take it that animals are capable of forming propositions. Read seems to regard them as fictions, but I take them to be brain events.
25. Social Practice / E. Policies / 5. Education / b. Education principles
Learned men gain more in one day than others do in a lifetime [Posidonius]
     Full Idea: In a single day there lies open to men of learning more than there ever does to the unenlightened in the longest of lifetimes.
     From: Posidonius (fragments/reports [c.95 BCE]), quoted by Seneca the Younger - Letters from a Stoic 078
     A reaction: These remarks endorsing the infinite superiority of the educated to the uneducated seem to have been popular in late antiquity. It tends to be the religions which discourage great learning, especially in their emphasis on a single book.
27. Natural Reality / D. Time / 1. Nature of Time / d. Time as measure
Time is an interval of motion, or the measure of speed [Posidonius, by Stobaeus]
     Full Idea: Posidonius defined time thus: it is an interval of motion, or the measure of speed and slowness.
     From: report of Posidonius (fragments/reports [c.95 BCE]) by John Stobaeus - Anthology 1.08.42
     A reaction: Hm. Can we define motion or speed without alluding to time? Looks like we have to define them as a conjoined pair, which means we cannot fully understand either of them.